September  2012, 11(5): 1825-1838. doi: 10.3934/cpaa.2012.11.1825

Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case

1. 

School of Mathematics and Information Sciences, Guangzhou University, Guangzhou, 510006

2. 

College of Mathematics Science, Chongqing Normal University, Chongqing 400047

3. 

Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7

Received  March 2011 Revised  September 2011 Published  March 2012

This paper deals with a class of non-local second order differential equations subject to the homogeneous Dirichlet boundary condition. The main concern is positive steady state of the boundary value problem, especially when the equation does not enjoy the monotonicity. Nonexistence, existence and uniqueness of positive steady state for the problem are addressed. In particular, developed is a technique that combines the method of super-sub solutions and the estimation of integral kernels, which enables us to obtain some sufficient conditions for the existence and uniqueness of a positive steady state. Two examples are given to illustrate the obtained results.
Citation: Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825
References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach space,, SIAM Review, 18 (1976), 620.  doi: 10.1137/1018114.  Google Scholar

[2]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, Vol. 19,, American Mathematical Society, (1998).   Google Scholar

[3]

P. Freitas and G. Sweers, Positivity results for a nonlocal elliptic equation,, Proceedings of the Royal Society of Edinburgh, 128A (1998), 697.  doi: 10.1017/S0308210500021727.  Google Scholar

[4]

W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited,, Nature, 287 (1980), 17.  doi: 10.1038/287017a0.  Google Scholar

[5]

P. Hess, On uniqueness of positive solutions to nonlinear elliptic boundary value problems,, Math. Z., 154 (1977), 17.  doi: 10.1007/BF01215108.  Google Scholar

[6]

D. Liang, J. W.-H. So, F. Zhang and X. Zou, Population dynamic models with nonlocal delay on bounded fields and their numeric computations,, Diff. Eqns. Dynam. Syst., 11 (2003), 117.   Google Scholar

[7]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287.  doi: 10.1126/science.267326.  Google Scholar

[8]

C. V. Pao, "Nonlinear Parablic and Elliptic Equations,", Plenum, (1992).  doi: 10.1007/978-1-4615-3034-3.  Google Scholar

[9]

M. H. Protter and H. F. Weinberger, "Maximum Principle in Differential Equations,", Springer-Verlag, (1984).  doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[10]

J. W.-H. So, J. Wu and X. Zou, A reaction diffusion model for a single species with age structure-I. Traveling wave fronts on unbounded domains,, Proc. Royal Soc. London. A, 457 (2001), 1841.   Google Scholar

[11]

D. Xu and X.-Q. Zhao, A nonlocal reaction diffusion population model with stage structure,, Canadian Applied Mathematics Quarterly, 11 (2003), 303.   Google Scholar

[12]

X.-Q. Zhao, Global attractivity in a class of nonmonotone reaction diffusion equations with delay,, Canad. Appl. Math. Quart., 17 (2009), 271.   Google Scholar

show all references

References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach space,, SIAM Review, 18 (1976), 620.  doi: 10.1137/1018114.  Google Scholar

[2]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, Vol. 19,, American Mathematical Society, (1998).   Google Scholar

[3]

P. Freitas and G. Sweers, Positivity results for a nonlocal elliptic equation,, Proceedings of the Royal Society of Edinburgh, 128A (1998), 697.  doi: 10.1017/S0308210500021727.  Google Scholar

[4]

W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited,, Nature, 287 (1980), 17.  doi: 10.1038/287017a0.  Google Scholar

[5]

P. Hess, On uniqueness of positive solutions to nonlinear elliptic boundary value problems,, Math. Z., 154 (1977), 17.  doi: 10.1007/BF01215108.  Google Scholar

[6]

D. Liang, J. W.-H. So, F. Zhang and X. Zou, Population dynamic models with nonlocal delay on bounded fields and their numeric computations,, Diff. Eqns. Dynam. Syst., 11 (2003), 117.   Google Scholar

[7]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287.  doi: 10.1126/science.267326.  Google Scholar

[8]

C. V. Pao, "Nonlinear Parablic and Elliptic Equations,", Plenum, (1992).  doi: 10.1007/978-1-4615-3034-3.  Google Scholar

[9]

M. H. Protter and H. F. Weinberger, "Maximum Principle in Differential Equations,", Springer-Verlag, (1984).  doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[10]

J. W.-H. So, J. Wu and X. Zou, A reaction diffusion model for a single species with age structure-I. Traveling wave fronts on unbounded domains,, Proc. Royal Soc. London. A, 457 (2001), 1841.   Google Scholar

[11]

D. Xu and X.-Q. Zhao, A nonlocal reaction diffusion population model with stage structure,, Canadian Applied Mathematics Quarterly, 11 (2003), 303.   Google Scholar

[12]

X.-Q. Zhao, Global attractivity in a class of nonmonotone reaction diffusion equations with delay,, Canad. Appl. Math. Quart., 17 (2009), 271.   Google Scholar

[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[5]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[6]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[8]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[9]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[10]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[11]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[12]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[13]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[16]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]