• Previous Article
    Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case
  • CPAA Home
  • This Issue
  • Next Article
    On a singular Hamiltonian elliptic systems involving critical growth in dimension two
September  2012, 11(5): 1839-1857. doi: 10.3934/cpaa.2012.11.1839

Collocation methods for differential equations with piecewise linear delays

1. 

School of Mathematical Sciences, Heilongjiang University, Harbin, Heilongjiang, China

2. 

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China

Received  March 2011 Revised  September 2011 Published  March 2012

After analyzing the regularity of solutions to delay differential equations (DDEs) with piecewise continuous (linear) non-vanishing delays, we describe collocation schemes using continuous piecewise polynomials for their numerical solution. We show that for carefully designed meshes these collocation solutions exhibit optimal orders of global and local superconvergence analogous to the ones for DDEs with constant delays. Numerical experiments illustrate the theoretical superconvergence results.
Citation: Hui Liang, Hermann Brunner. Collocation methods for differential equations with piecewise linear delays. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1839-1857. doi: 10.3934/cpaa.2012.11.1839
References:
[1]

A. Bellen, One-step collocation for delay differential equations,, J. Comput. Appl. Math., 10 (1984), 275. doi: 10.1016/0377-0427(84)90039-6. Google Scholar

[2]

A. Bellen, S. Maset, M. Zennaro and N. Guglielmi, Recent trends in the numerical solution of retarded functional differential equations,, Acta Numer., 18 (2009), 1. doi: 10.1017/S0962492906390010. Google Scholar

[3]

A. Bellen and M. Zennaro, "Numerical Methods for Delay Differential Equations,", Clarendon Press, (2003). doi: 10.1093/acprof:oso/9780198506546.001.0001. Google Scholar

[4]

R. Bellman and K. L. Cooke, "Differential-Difference Equations,", Academic Press, (1963). doi: 10.1063/1.3050672. Google Scholar

[5]

H. Brunner, The numerical solution of neutral Volterra integro-differential equations with delay arguments,, Ann. Numer. Math., 1 (1994), 309. Google Scholar

[6]

H. Brunner, "Collocation Methods for Volterra Integral and Related Functional Differential Equations,", Cambridge University Press, (2004). doi: 10.1017/CBO9780511543234. Google Scholar

[7]

H. Brunner and S. Maset, Time transformations for delay differential equations,, Discrete Contin. Dyn. Syst., 25 (2009), 751. doi: 10.3934/dcds.2009.25.751. Google Scholar

[8]

H. Brunner and W. K. Zhang, Primary discontinuities in solutions for delay integro-differential equations,, Methods Appl. Anal., 6 (1999), 525. Google Scholar

[9]

K. L. Cooke and J. Wiener, A survey of differential equations with piecewise continuous arguments,, in, (1991), 1. doi: 10.1007/BFb0083475. Google Scholar

[10]

L. E. El'sgol'ts and S. B. Norkin, "Introduction to the Theory and Application of Differential Equations with Deviating Arguments,", Academic Press, (1973). Google Scholar

[11]

N. Guglielmi and E. Hairer, Computing breaking points in implicit delay differential equations,, Adv. Comput. Math., 29 (2008), 229. doi: 10.1007/s10444-007-9044-5. Google Scholar

[12]

I. Györi, F. Hartung and J. Turi, Numerical approximations for a class of differential equations with time- and state-dependent delays,, Appl. Math. Lett., 8 (1995), 19. doi: 10.1016/0893-9659(95)00079-6. Google Scholar

[13]

I. Györi and F. Hartung, On numerical approximation using differential equations with piecewise-constant arguments,, Period. Math. Hungar., 56 (2008), 55. doi: 10.1007/s10998-008-5055-5. Google Scholar

[14]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations,", Springer-Verlag, (1993). Google Scholar

[15]

V. Kolmanovskii and A. Myshkis, "Applied Theory of Functional-Differential Equations,", Kluwer, (1992). Google Scholar

[16]

H. Liang, M. Z. Liu and W. J. Lv, Stability of $\theta $-schemes in the numerical solution of a partial differential equation with piecewise continuous arguments,, Period. Appl. Math. Lett., 23 (2010), 198. doi: 10.1016/j.aml.2009.09.012. Google Scholar

[17]

M. Z. Liu, M. H. Song and Z. W. Yang, Stability of Runge-Kutta methods in the numerical solution of equation $u'(t)=au(t)+a_0u([t])$,, J. Comput. Appl. Math., 166 (2004), 361. doi: 10.1016/j.cam.2003.04.002. Google Scholar

[18]

Z. W. Yang, M. Z. Liu and M. H. Song, Stability of Runge-Kutta methods in the numerical solution of equation $u'(t) = au(t)+a_0 u([t])+a_1 u([t-1])$,, Appl. Math. Comput., 162 (2005), 37. doi: 10.1016/j.amc.2003.12.081. Google Scholar

show all references

References:
[1]

A. Bellen, One-step collocation for delay differential equations,, J. Comput. Appl. Math., 10 (1984), 275. doi: 10.1016/0377-0427(84)90039-6. Google Scholar

[2]

A. Bellen, S. Maset, M. Zennaro and N. Guglielmi, Recent trends in the numerical solution of retarded functional differential equations,, Acta Numer., 18 (2009), 1. doi: 10.1017/S0962492906390010. Google Scholar

[3]

A. Bellen and M. Zennaro, "Numerical Methods for Delay Differential Equations,", Clarendon Press, (2003). doi: 10.1093/acprof:oso/9780198506546.001.0001. Google Scholar

[4]

R. Bellman and K. L. Cooke, "Differential-Difference Equations,", Academic Press, (1963). doi: 10.1063/1.3050672. Google Scholar

[5]

H. Brunner, The numerical solution of neutral Volterra integro-differential equations with delay arguments,, Ann. Numer. Math., 1 (1994), 309. Google Scholar

[6]

H. Brunner, "Collocation Methods for Volterra Integral and Related Functional Differential Equations,", Cambridge University Press, (2004). doi: 10.1017/CBO9780511543234. Google Scholar

[7]

H. Brunner and S. Maset, Time transformations for delay differential equations,, Discrete Contin. Dyn. Syst., 25 (2009), 751. doi: 10.3934/dcds.2009.25.751. Google Scholar

[8]

H. Brunner and W. K. Zhang, Primary discontinuities in solutions for delay integro-differential equations,, Methods Appl. Anal., 6 (1999), 525. Google Scholar

[9]

K. L. Cooke and J. Wiener, A survey of differential equations with piecewise continuous arguments,, in, (1991), 1. doi: 10.1007/BFb0083475. Google Scholar

[10]

L. E. El'sgol'ts and S. B. Norkin, "Introduction to the Theory and Application of Differential Equations with Deviating Arguments,", Academic Press, (1973). Google Scholar

[11]

N. Guglielmi and E. Hairer, Computing breaking points in implicit delay differential equations,, Adv. Comput. Math., 29 (2008), 229. doi: 10.1007/s10444-007-9044-5. Google Scholar

[12]

I. Györi, F. Hartung and J. Turi, Numerical approximations for a class of differential equations with time- and state-dependent delays,, Appl. Math. Lett., 8 (1995), 19. doi: 10.1016/0893-9659(95)00079-6. Google Scholar

[13]

I. Györi and F. Hartung, On numerical approximation using differential equations with piecewise-constant arguments,, Period. Math. Hungar., 56 (2008), 55. doi: 10.1007/s10998-008-5055-5. Google Scholar

[14]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations,", Springer-Verlag, (1993). Google Scholar

[15]

V. Kolmanovskii and A. Myshkis, "Applied Theory of Functional-Differential Equations,", Kluwer, (1992). Google Scholar

[16]

H. Liang, M. Z. Liu and W. J. Lv, Stability of $\theta $-schemes in the numerical solution of a partial differential equation with piecewise continuous arguments,, Period. Appl. Math. Lett., 23 (2010), 198. doi: 10.1016/j.aml.2009.09.012. Google Scholar

[17]

M. Z. Liu, M. H. Song and Z. W. Yang, Stability of Runge-Kutta methods in the numerical solution of equation $u'(t)=au(t)+a_0u([t])$,, J. Comput. Appl. Math., 166 (2004), 361. doi: 10.1016/j.cam.2003.04.002. Google Scholar

[18]

Z. W. Yang, M. Z. Liu and M. H. Song, Stability of Runge-Kutta methods in the numerical solution of equation $u'(t) = au(t)+a_0 u([t])+a_1 u([t-1])$,, Appl. Math. Comput., 162 (2005), 37. doi: 10.1016/j.amc.2003.12.081. Google Scholar

[1]

Gabriel Fuhrmann, Jing Wang. Rectifiability of a class of invariant measures with one non-vanishing Lyapunov exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5747-5761. doi: 10.3934/dcds.2017249

[2]

Angelamaria Cardone, Dajana Conte, Beatrice Paternoster. Two-step collocation methods for fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2709-2725. doi: 10.3934/dcdsb.2018088

[3]

Zhong-Qing Wang, Li-Lian Wang. A Legendre-Gauss collocation method for nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 685-708. doi: 10.3934/dcdsb.2010.13.685

[4]

Zhiming Guo, Xiaomin Zhang. Multiplicity results for periodic solutions to a class of second order delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1529-1542. doi: 10.3934/cpaa.2010.9.1529

[5]

Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115

[6]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

[7]

Kai Liu. Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3915-3934. doi: 10.3934/dcdsb.2018117

[8]

Jie Tang, Ziqing Xie, Zhimin Zhang. The long time behavior of a spectral collocation method for delay differential equations of pantograph type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 797-819. doi: 10.3934/dcdsb.2013.18.797

[9]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[10]

Ben-Yu Guo, Zhong-Qing Wang. A spectral collocation method for solving initial value problems of first order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1029-1054. doi: 10.3934/dcdsb.2010.14.1029

[11]

Hermann Brunner, Chunhua Ou. On the asymptotic stability of Volterra functional equations with vanishing delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 397-406. doi: 10.3934/cpaa.2015.14.397

[12]

Wenming Hu, Huicheng Yin. Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1891-1919. doi: 10.3934/cpaa.2019088

[13]

Can Huang, Zhimin Zhang. The spectral collocation method for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 667-679. doi: 10.3934/dcdsb.2013.18.667

[14]

Pedro J. Torres, Zhibo Cheng, Jingli Ren. Non-degeneracy and uniqueness of periodic solutions for $2n$-order differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2155-2168. doi: 10.3934/dcds.2013.33.2155

[15]

Josef Diblík, Radoslav Chupáč, Miroslava Růžičková. Existence of unbounded solutions of a linear homogenous system of differential equations with two delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2447-2459. doi: 10.3934/dcdsb.2014.19.2447

[16]

Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024

[17]

Saroj Panigrahi, Rakhee Basu. Oscillation results for second order nonlinear neutral differential equations with delay. Conference Publications, 2015, 2015 (special) : 906-912. doi: 10.3934/proc.2015.0906

[18]

John R. Graef, R. Savithri, E. Thandapani. Oscillatory properties of third order neutral delay differential equations. Conference Publications, 2003, 2003 (Special) : 342-350. doi: 10.3934/proc.2003.2003.342

[19]

Baruch Cahlon. Sufficient conditions for oscillations of higher order neutral delay differential equations. Conference Publications, 1998, 1998 (Special) : 124-137. doi: 10.3934/proc.1998.1998.124

[20]

Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]