Citation: |
[1] |
A. Bellen, One-step collocation for delay differential equations, J. Comput. Appl. Math., 10 (1984), 275-283.doi: 10.1016/0377-0427(84)90039-6. |
[2] |
A. Bellen, S. Maset, M. Zennaro and N. Guglielmi, Recent trends in the numerical solution of retarded functional differential equations, Acta Numer., 18 (2009), 1-110.doi: 10.1017/S0962492906390010. |
[3] |
A. Bellen and M. Zennaro, "Numerical Methods for Delay Differential Equations," Clarendon Press, Oxford, 2003.doi: 10.1093/acprof:oso/9780198506546.001.0001. |
[4] |
R. Bellman and K. L. Cooke, "Differential-Difference Equations," Academic Press, New York-London, 1963.doi: 10.1063/1.3050672. |
[5] |
H. Brunner, The numerical solution of neutral Volterra integro-differential equations with delay arguments, Ann. Numer. Math., 1 (1994), 309-322. |
[6] |
H. Brunner, "Collocation Methods for Volterra Integral and Related Functional Differential Equations," Cambridge University Press, Cambridge, 2004.doi: 10.1017/CBO9780511543234. |
[7] |
H. Brunner and S. Maset, Time transformations for delay differential equations, Discrete Contin. Dyn. Syst., 25 (2009), 751-775.doi: 10.3934/dcds.2009.25.751. |
[8] |
H. Brunner and W. K. Zhang, Primary discontinuities in solutions for delay integro-differential equations, Methods Appl. Anal., 6 (1999), 525-533. |
[9] |
K. L. Cooke and J. Wiener, A survey of differential equations with piecewise continuous arguments, in "Delay Differential Equations and Dynamical Systems (Claremont, CA, 1990)" (eds. S. Busenberg and M. Martelli), 1-15, Lecture Notes Math., 1475, Springer-Verlag, Berlin, (1991).doi: 10.1007/BFb0083475. |
[10] |
L. E. El'sgol'ts and S. B. Norkin, "Introduction to the Theory and Application of Differential Equations with Deviating Arguments," Academic Press, New York, 1973. |
[11] |
N. Guglielmi and E. Hairer, Computing breaking points in implicit delay differential equations, Adv. Comput. Math., 29 (2008), 229-247.doi: 10.1007/s10444-007-9044-5. |
[12] |
I. Györi, F. Hartung and J. Turi, Numerical approximations for a class of differential equations with time- and state-dependent delays, Appl. Math. Lett., 8 (1995), 19-24.doi: 10.1016/0893-9659(95)00079-6. |
[13] |
I. Györi and F. Hartung, On numerical approximation using differential equations with piecewise-constant arguments, Period. Math. Hungar., 56 (2008), 55-69.doi: 10.1007/s10998-008-5055-5. |
[14] |
J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations," Springer-Verlag, New York, 1993. |
[15] |
V. Kolmanovskii and A. Myshkis, "Applied Theory of Functional-Differential Equations," Kluwer, Dordrecht, 1992. |
[16] |
H. Liang, M. Z. Liu and W. J. Lv, Stability of $\theta $-schemes in the numerical solution of a partial differential equation with piecewise continuous arguments, Period. Appl. Math. Lett., 23 (2010), 198-206.doi: 10.1016/j.aml.2009.09.012. |
[17] |
M. Z. Liu, M. H. Song and Z. W. Yang, Stability of Runge-Kutta methods in the numerical solution of equation $u'(t)=au(t)+a_0u([t])$, J. Comput. Appl. Math., 166, (2004), 361-370.doi: 10.1016/j.cam.2003.04.002. |
[18] |
Z. W. Yang, M. Z. Liu and M. H. Song, Stability of Runge-Kutta methods in the numerical solution of equation $u'(t) = au(t)+a_0 u([t])+a_1 u([t-1])$, Appl. Math. Comput., 162 (2005), 37-50.doi: 10.1016/j.amc.2003.12.081. |