Citation: |
[1] |
Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1990), 393-413. |
[2] |
Adimurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications, NoDEA Nonlinear Differential Equations Appl., 13 (2007), 585-603. |
[3] |
H. Berestycki and P. -L. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. |
[4] |
D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbbR^2$, Comm. Partial Differential Equations, 17 (1992), 407-435. |
[5] |
D. G. de Figueiredo, J. M. do Ó and B. Ruf, Critical and subcritical elliptic systems in dimension two, Indiana Univ. Math. J., 53 (2004), 1037-1054. |
[6] |
D. G. de Figueiredo and P. L. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc., 343 (1994), 97-116. |
[7] |
D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $\mathbbR^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153. |
[8] |
M. de Souza and J. M. do Ó, On a class of singular Trudinger-Moser type inequalities and its applications, Mathematische Nachrichten, 284 (2011), 1754-1776. |
[9] |
Y. Ding and S. Li, Existence of entire solutions for some elliptic systems, Bulletin of the Australian Mathematical Society, 50 (1994), 501-519. |
[10] |
J. M. do Ó, Liliane A. Maia and Elves A. B. Silva, Standing wave solutions for system of Schrodinger equations in $\mathbbR^2$ involving critical growth, to appear. |
[11] |
J. M. do Ó, E. Medeiros and U. B. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008) 286-304 |
[12] |
J. Giacomoni and K. Sreenadh, A multiplicity result to a nonhomogeneous elliptic equation in whole space $\mathbbR^2$, Adv. Math. Sci. Appl., 15 (2005), 467-488. |
[13] |
J. Hulshot, E. Mitidieri and R. Van der Vorst, Strongly indefinite systems with critical Sobolev exponents, Trans. Amer. Math. Soc., 350 (1998), 2349-2365. |
[14] |
V. Kondrat'ev and M. Shubin, Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry, Operator Theory: Advances and Applications, 110 (1999), 185-226. |
[15] |
J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092. |
[16] |
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS Regional Conf. Ser. in Math., 65, AMS, Providence, RI, 1986. |
[17] |
N. S. Trudinger, On the embedding into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-484. |
[18] |
G. Zhang and S. Liu, Existence result for a class of elliptic systems with indefinite weights in $\mathbbR^2$, Bound. Value Probl., 2008, Art. ID 217636, 10 pp. |