September  2012, 11(5): 1859-1874. doi: 10.3934/cpaa.2012.11.1859

On a singular Hamiltonian elliptic systems involving critical growth in dimension two

1. 

Departamento de Matem, Brazil

Received  March 2011 Revised  December 2011 Published  March 2012

In this paper we study the existence of nontrivial solutions for the strongly indefinite elliptic system \begin{eqnarray*} -\Delta u + b(x) u = \frac{g(v)}{|x|^\alpha}, v > 0 in R^2, \\ -\Delta v + b(x) v = \frac{f(u)}{|x|^\beta}, u > 0 in R^2, \end{eqnarray*} where $\alpha, \beta \in [0,2)$, $b: \mathbb{R}^2\rightarrow \mathbb{R}$ is a continuous positive potential bounded away from zero and which can be ``large" at the infinity and the functions $f: \mathbb{R}\rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ behaves like $\exp(\gamma s^2)$ when $|s|\rightarrow+\infty$ for some $\gamma >0$.
Citation: Manassés de Souza. On a singular Hamiltonian elliptic systems involving critical growth in dimension two. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1859-1874. doi: 10.3934/cpaa.2012.11.1859
References:
[1]

Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1990), 393.   Google Scholar

[2]

Adimurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications,, NoDEA Nonlinear Differential Equations Appl., 13 (2007), 585.   Google Scholar

[3]

H. Berestycki and P. -L. Lions, Nonlinear scalar field equations, I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.   Google Scholar

[4]

D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbbR^2$,, Comm. Partial Differential Equations, 17 (1992), 407.   Google Scholar

[5]

D. G. de Figueiredo, J. M. do Ó and B. Ruf, Critical and subcritical elliptic systems in dimension two,, Indiana Univ. Math. J., 53 (2004), 1037.   Google Scholar

[6]

D. G. de Figueiredo and P. L. Felmer, On superquadratic elliptic systems,, Trans. Amer. Math. Soc., 343 (1994), 97.   Google Scholar

[7]

D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $\mathbbR^2$ with nonlinearities in the critical growth range,, Calc. Var. Partial Differential Equations, 3 (1995), 139.   Google Scholar

[8]

M. de Souza and J. M. do Ó, On a class of singular Trudinger-Moser type inequalities and its applications,, Mathematische Nachrichten, 284 (2011), 1754.   Google Scholar

[9]

Y. Ding and S. Li, Existence of entire solutions for some elliptic systems,, Bulletin of the Australian Mathematical Society, 50 (1994), 501.   Google Scholar

[10]

J. M. do Ó, Liliane A. Maia and Elves A. B. Silva, Standing wave solutions for system of Schrodinger equations in $\mathbbR^2$ involving critical growth,, to appear., ().   Google Scholar

[11]

J. M. do Ó, E. Medeiros and U. B. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two,, J. Math. Anal. Appl., 345 (2008), 286.   Google Scholar

[12]

J. Giacomoni and K. Sreenadh, A multiplicity result to a nonhomogeneous elliptic equation in whole space $\mathbbR^2$,, Adv. Math. Sci. Appl., 15 (2005), 467.   Google Scholar

[13]

J. Hulshot, E. Mitidieri and R. Van der Vorst, Strongly indefinite systems with critical Sobolev exponents,, Trans. Amer. Math. Soc., 350 (1998), 2349.   Google Scholar

[14]

V. Kondrat'ev and M. Shubin, Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry,, Operator Theory: Advances and Applications, 110 (1999), 185.   Google Scholar

[15]

J. Moser, A sharp form of an inequality by N. Trudinger,, Indiana Univ. Math. J., 20 (): 1077.   Google Scholar

[16]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conf. Ser. in Math., (1986).   Google Scholar

[17]

N. S. Trudinger, On the embedding into Orlicz spaces and some applications,, J. Math. Mech., 17 (1967), 473.   Google Scholar

[18]

G. Zhang and S. Liu, Existence result for a class of elliptic systems with indefinite weights in $\mathbbR^2$,, Bound. Value Probl., (2008).   Google Scholar

show all references

References:
[1]

Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1990), 393.   Google Scholar

[2]

Adimurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications,, NoDEA Nonlinear Differential Equations Appl., 13 (2007), 585.   Google Scholar

[3]

H. Berestycki and P. -L. Lions, Nonlinear scalar field equations, I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.   Google Scholar

[4]

D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbbR^2$,, Comm. Partial Differential Equations, 17 (1992), 407.   Google Scholar

[5]

D. G. de Figueiredo, J. M. do Ó and B. Ruf, Critical and subcritical elliptic systems in dimension two,, Indiana Univ. Math. J., 53 (2004), 1037.   Google Scholar

[6]

D. G. de Figueiredo and P. L. Felmer, On superquadratic elliptic systems,, Trans. Amer. Math. Soc., 343 (1994), 97.   Google Scholar

[7]

D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $\mathbbR^2$ with nonlinearities in the critical growth range,, Calc. Var. Partial Differential Equations, 3 (1995), 139.   Google Scholar

[8]

M. de Souza and J. M. do Ó, On a class of singular Trudinger-Moser type inequalities and its applications,, Mathematische Nachrichten, 284 (2011), 1754.   Google Scholar

[9]

Y. Ding and S. Li, Existence of entire solutions for some elliptic systems,, Bulletin of the Australian Mathematical Society, 50 (1994), 501.   Google Scholar

[10]

J. M. do Ó, Liliane A. Maia and Elves A. B. Silva, Standing wave solutions for system of Schrodinger equations in $\mathbbR^2$ involving critical growth,, to appear., ().   Google Scholar

[11]

J. M. do Ó, E. Medeiros and U. B. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two,, J. Math. Anal. Appl., 345 (2008), 286.   Google Scholar

[12]

J. Giacomoni and K. Sreenadh, A multiplicity result to a nonhomogeneous elliptic equation in whole space $\mathbbR^2$,, Adv. Math. Sci. Appl., 15 (2005), 467.   Google Scholar

[13]

J. Hulshot, E. Mitidieri and R. Van der Vorst, Strongly indefinite systems with critical Sobolev exponents,, Trans. Amer. Math. Soc., 350 (1998), 2349.   Google Scholar

[14]

V. Kondrat'ev and M. Shubin, Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry,, Operator Theory: Advances and Applications, 110 (1999), 185.   Google Scholar

[15]

J. Moser, A sharp form of an inequality by N. Trudinger,, Indiana Univ. Math. J., 20 (): 1077.   Google Scholar

[16]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conf. Ser. in Math., (1986).   Google Scholar

[17]

N. S. Trudinger, On the embedding into Orlicz spaces and some applications,, J. Math. Mech., 17 (1967), 473.   Google Scholar

[18]

G. Zhang and S. Liu, Existence result for a class of elliptic systems with indefinite weights in $\mathbbR^2$,, Bound. Value Probl., (2008).   Google Scholar

[1]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[2]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[3]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[4]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[5]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[6]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[7]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[8]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[9]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[10]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[11]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[12]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[13]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[14]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[15]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[16]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[17]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[18]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[19]

Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001

[20]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]