September  2012, 11(5): 1859-1874. doi: 10.3934/cpaa.2012.11.1859

On a singular Hamiltonian elliptic systems involving critical growth in dimension two

1. 

Departamento de Matem, Brazil

Received  March 2011 Revised  December 2011 Published  March 2012

In this paper we study the existence of nontrivial solutions for the strongly indefinite elliptic system \begin{eqnarray*} -\Delta u + b(x) u = \frac{g(v)}{|x|^\alpha}, v > 0 in R^2, \\ -\Delta v + b(x) v = \frac{f(u)}{|x|^\beta}, u > 0 in R^2, \end{eqnarray*} where $\alpha, \beta \in [0,2)$, $b: \mathbb{R}^2\rightarrow \mathbb{R}$ is a continuous positive potential bounded away from zero and which can be ``large" at the infinity and the functions $f: \mathbb{R}\rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ behaves like $\exp(\gamma s^2)$ when $|s|\rightarrow+\infty$ for some $\gamma >0$.
Citation: Manassés de Souza. On a singular Hamiltonian elliptic systems involving critical growth in dimension two. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1859-1874. doi: 10.3934/cpaa.2012.11.1859
References:
[1]

Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1990), 393.   Google Scholar

[2]

Adimurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications,, NoDEA Nonlinear Differential Equations Appl., 13 (2007), 585.   Google Scholar

[3]

H. Berestycki and P. -L. Lions, Nonlinear scalar field equations, I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.   Google Scholar

[4]

D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbbR^2$,, Comm. Partial Differential Equations, 17 (1992), 407.   Google Scholar

[5]

D. G. de Figueiredo, J. M. do Ó and B. Ruf, Critical and subcritical elliptic systems in dimension two,, Indiana Univ. Math. J., 53 (2004), 1037.   Google Scholar

[6]

D. G. de Figueiredo and P. L. Felmer, On superquadratic elliptic systems,, Trans. Amer. Math. Soc., 343 (1994), 97.   Google Scholar

[7]

D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $\mathbbR^2$ with nonlinearities in the critical growth range,, Calc. Var. Partial Differential Equations, 3 (1995), 139.   Google Scholar

[8]

M. de Souza and J. M. do Ó, On a class of singular Trudinger-Moser type inequalities and its applications,, Mathematische Nachrichten, 284 (2011), 1754.   Google Scholar

[9]

Y. Ding and S. Li, Existence of entire solutions for some elliptic systems,, Bulletin of the Australian Mathematical Society, 50 (1994), 501.   Google Scholar

[10]

J. M. do Ó, Liliane A. Maia and Elves A. B. Silva, Standing wave solutions for system of Schrodinger equations in $\mathbbR^2$ involving critical growth,, to appear., ().   Google Scholar

[11]

J. M. do Ó, E. Medeiros and U. B. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two,, J. Math. Anal. Appl., 345 (2008), 286.   Google Scholar

[12]

J. Giacomoni and K. Sreenadh, A multiplicity result to a nonhomogeneous elliptic equation in whole space $\mathbbR^2$,, Adv. Math. Sci. Appl., 15 (2005), 467.   Google Scholar

[13]

J. Hulshot, E. Mitidieri and R. Van der Vorst, Strongly indefinite systems with critical Sobolev exponents,, Trans. Amer. Math. Soc., 350 (1998), 2349.   Google Scholar

[14]

V. Kondrat'ev and M. Shubin, Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry,, Operator Theory: Advances and Applications, 110 (1999), 185.   Google Scholar

[15]

J. Moser, A sharp form of an inequality by N. Trudinger,, Indiana Univ. Math. J., 20 (): 1077.   Google Scholar

[16]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conf. Ser. in Math., (1986).   Google Scholar

[17]

N. S. Trudinger, On the embedding into Orlicz spaces and some applications,, J. Math. Mech., 17 (1967), 473.   Google Scholar

[18]

G. Zhang and S. Liu, Existence result for a class of elliptic systems with indefinite weights in $\mathbbR^2$,, Bound. Value Probl., (2008).   Google Scholar

show all references

References:
[1]

Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1990), 393.   Google Scholar

[2]

Adimurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications,, NoDEA Nonlinear Differential Equations Appl., 13 (2007), 585.   Google Scholar

[3]

H. Berestycki and P. -L. Lions, Nonlinear scalar field equations, I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.   Google Scholar

[4]

D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbbR^2$,, Comm. Partial Differential Equations, 17 (1992), 407.   Google Scholar

[5]

D. G. de Figueiredo, J. M. do Ó and B. Ruf, Critical and subcritical elliptic systems in dimension two,, Indiana Univ. Math. J., 53 (2004), 1037.   Google Scholar

[6]

D. G. de Figueiredo and P. L. Felmer, On superquadratic elliptic systems,, Trans. Amer. Math. Soc., 343 (1994), 97.   Google Scholar

[7]

D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $\mathbbR^2$ with nonlinearities in the critical growth range,, Calc. Var. Partial Differential Equations, 3 (1995), 139.   Google Scholar

[8]

M. de Souza and J. M. do Ó, On a class of singular Trudinger-Moser type inequalities and its applications,, Mathematische Nachrichten, 284 (2011), 1754.   Google Scholar

[9]

Y. Ding and S. Li, Existence of entire solutions for some elliptic systems,, Bulletin of the Australian Mathematical Society, 50 (1994), 501.   Google Scholar

[10]

J. M. do Ó, Liliane A. Maia and Elves A. B. Silva, Standing wave solutions for system of Schrodinger equations in $\mathbbR^2$ involving critical growth,, to appear., ().   Google Scholar

[11]

J. M. do Ó, E. Medeiros and U. B. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two,, J. Math. Anal. Appl., 345 (2008), 286.   Google Scholar

[12]

J. Giacomoni and K. Sreenadh, A multiplicity result to a nonhomogeneous elliptic equation in whole space $\mathbbR^2$,, Adv. Math. Sci. Appl., 15 (2005), 467.   Google Scholar

[13]

J. Hulshot, E. Mitidieri and R. Van der Vorst, Strongly indefinite systems with critical Sobolev exponents,, Trans. Amer. Math. Soc., 350 (1998), 2349.   Google Scholar

[14]

V. Kondrat'ev and M. Shubin, Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry,, Operator Theory: Advances and Applications, 110 (1999), 185.   Google Scholar

[15]

J. Moser, A sharp form of an inequality by N. Trudinger,, Indiana Univ. Math. J., 20 (): 1077.   Google Scholar

[16]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conf. Ser. in Math., (1986).   Google Scholar

[17]

N. S. Trudinger, On the embedding into Orlicz spaces and some applications,, J. Math. Mech., 17 (1967), 473.   Google Scholar

[18]

G. Zhang and S. Liu, Existence result for a class of elliptic systems with indefinite weights in $\mathbbR^2$,, Bound. Value Probl., (2008).   Google Scholar

[1]

Djairo G. De Figueiredo, João Marcos do Ó, Bernhard Ruf. Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 455-476. doi: 10.3934/dcds.2011.30.455

[2]

Kyril Tintarev. Is the Trudinger-Moser nonlinearity a true critical nonlinearity?. Conference Publications, 2011, 2011 (Special) : 1378-1384. doi: 10.3934/proc.2011.2011.1378

[3]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[4]

Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505

[5]

Xiaobao Zhu. Remarks on singular trudinger-moser type inequalities. Communications on Pure & Applied Analysis, 2020, 19 (1) : 103-112. doi: 10.3934/cpaa.2020006

[6]

Yinbin Deng, Shuangjie Peng, Li Wang. Infinitely many radial solutions to elliptic systems involving critical exponents. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 461-475. doi: 10.3934/dcds.2014.34.461

[7]

Kanishka Perera, Marco Squassina. Bifurcation results for problems with fractional Trudinger-Moser nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 561-576. doi: 10.3934/dcdss.2018031

[8]

Xiaomei Sun, Yimin Zhang. Elliptic equations with cylindrical potential and multiple critical exponents. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1943-1957. doi: 10.3934/cpaa.2013.12.1943

[9]

Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085

[10]

Jaime Arango, Adriana Gómez. Critical points of solutions to elliptic problems in planar domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 327-338. doi: 10.3934/cpaa.2011.10.327

[11]

Dongsheng Kang. Quasilinear systems involving multiple critical exponents and potentials. Communications on Pure & Applied Analysis, 2013, 12 (2) : 695-710. doi: 10.3934/cpaa.2013.12.695

[12]

Dongsheng Kang, Fen Yang. Semilinear elliptic systems involving multiple critical exponents and singularities in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4247-4263. doi: 10.3934/dcds.2012.32.4247

[13]

Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110

[14]

Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121

[15]

Prosenjit Roy. On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5207-5222. doi: 10.3934/dcds.2019212

[16]

Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357

[17]

Filippo Gazzola. Critical exponents which relate embedding inequalities with quasilinear elliptic problems. Conference Publications, 2003, 2003 (Special) : 327-335. doi: 10.3934/proc.2003.2003.327

[18]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[19]

Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615

[20]

Keith Promislow, Hang Zhang. Critical points of functionalized Lagrangians. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1231-1246. doi: 10.3934/dcds.2013.33.1231

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]