• Previous Article
    Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients
  • CPAA Home
  • This Issue
  • Next Article
    On a singular Hamiltonian elliptic systems involving critical growth in dimension two
September  2012, 11(5): 1875-1895. doi: 10.3934/cpaa.2012.11.1875

Elliptic equations having a singular quadratic gradient term and a changing sign datum

1. 

Dip. Metodi e Modelli Matematici per le Scienze Applicate, Univ. Roma 1, Via Antonio Scarpa 16, 00161 Roma

2. 

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza, Università di Roma, Via Scarpa 16, 00161 Roma, Italy

3. 

Departament d'An, Spain

Received  March 2011 Revised  February 2012 Published  March 2012

In this paper we study a singular elliptic problem whose model is \begin{eqnarray*} - \Delta u= \frac{|\nabla u|^2}{|u|^\theta}+f(x), in \Omega\\ u = 0, on \partial \Omega; \end{eqnarray*} where $\theta\in (0,1)$ and $f \in L^m (\Omega)$, with $m\geq \frac{N}{2}$. We do not assume any sign condition on the lower order term, nor assume the datum $f$ has a constant sign. We carefully define the meaning of solution to this problem giving sense to the gradient term where $u=0$, and prove the existence of such a solution. We also discuss related questions as the existence of solutions when the datum $f$ is less regular or the boundedness of the solutions when the datum $f \in L^m (\Omega)$ with $m> \frac{N}{2}$.
Citation: Daniela Giachetti, Francesco Petitta, Sergio Segura de León. Elliptic equations having a singular quadratic gradient term and a changing sign datum. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1875-1895. doi: 10.3934/cpaa.2012.11.1875
References:
[1]

B. Abdellaoui, D. Giachetti, I. Peral and M. Walias, Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary,, Nonlinear Analysis, 74 (2011), 1355. Google Scholar

[2]

D. Arcoya, S. Barile and P. J. Martínez-Aparicio, Singular quasilinear equations with quadratic growth in the gradient without sign condition,, J. Math. Anal. Appl., 350 (2009), 401. doi: 10.1016/j.jmaa.2008.09.073. Google Scholar

[3]

D. Arcoya, L. Boccardo, T. Leonori and A. Porretta, Some elliptic problems with singular natural growth lower order terms,, J. Differential Equations, 249 (2010), 2771. doi: 10.1016/j.jde.2010.05.009. Google Scholar

[4]

D. Arcoya, J. Carmona, T. Leonori, P. J. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations,, J. Differential Equations, 246 (2009), 4006. doi: 10.1016/j.jde.2009.01.016. Google Scholar

[5]

D. Arcoya, J. Carmona and P. J. Martínez-Aparicio, Elliptic obstacle problems with natural growth on the gradient and singular nonlinear terms,, Adv. Nonlinear Stud., 7 (2007), 299. Google Scholar

[6]

D. Arcoya and P. J. Martínez-Aparicio, Quasilinear equations with natural growth,, Rev. Mat. Iberoamericana, 24 (2008), 597. doi: 10.4171/RMI/548. Google Scholar

[7]

D. Arcoya and S. Segura de León, Uniqueness of solutions for some elliptic equations with a quadratic gradient term,, ESAIM: Control, 16 (2010), 327. doi: 10.1051/cocv:2008072. Google Scholar

[8]

L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms,, ESAIM Control Optim. Calc. Var., 14 (2008), 411. doi: 10.1051/cocv:2008031. Google Scholar

[9]

L. Boccardo and T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data,, Nonlinear Anal., 19 (1992), 573. doi: 10.1016/0362-546X(92)90022-7. Google Scholar

[10]

L. Boccardo, T. Leonori, L. Orsina and F. Petitta, Quasilinear elliptic equations with singular quadratic growth terms,, Comm. Contemp. Math., 13 (2011), 607. doi: 10.1142/S0219199711004300. Google Scholar

[11]

L. Boccardo, F. Murat and J. P. Puel, Existence de solutions non bornées pour certaines équations quasi-linéaires,, Portugal. Math., 41 (1982), 507. Google Scholar

[12]

L. Boccardo, F. Murat and J. P. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 213. Google Scholar

[13]

L. Boccardo, F. Murat and J. P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems,, Ann. Mat. Pura Appl., 152 (1988), 183. doi: 10.1007/BF01766148. Google Scholar

[14]

L. Boccardo, S. Segura de León and C. Trombetti, Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term,, J. Math. Pures Appl., 80 (2001), 919. doi: 10.1016/S0021-7824(01)01211-9. Google Scholar

[15]

F. E. Browder, Existence theorems for nonlinear partial differential equations,, Amer. Math. Soc., (1970), 671-688., (1970), 671. Google Scholar

[16]

D. Giachetti and F. Murat, An elliptic problem with a lower order term having singular behaviour,, Boll. Unione Mat. Ital., 2 (2009), 349. Google Scholar

[17]

D. Giachetti and S. Segura de León, Quasilinear stationary problems with a quadratic gradient term having singularities,, J. London Math. Soc., (). Google Scholar

[18]

A. Porretta and S. Segura de León, Nonlinear elliptic equations having a gradient term with natural growth,, J. Math. Pures Appl., 85 (2006), 465. doi: 10.1016/j.matpur.2005.10.009. Google Scholar

[19]

S. Segura de León, Existence and uniqueness for $L^1$ data of some elliptic equations with natural growth,, Adv. Diff. Eq., 8 (2003), 1377. Google Scholar

show all references

References:
[1]

B. Abdellaoui, D. Giachetti, I. Peral and M. Walias, Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary,, Nonlinear Analysis, 74 (2011), 1355. Google Scholar

[2]

D. Arcoya, S. Barile and P. J. Martínez-Aparicio, Singular quasilinear equations with quadratic growth in the gradient without sign condition,, J. Math. Anal. Appl., 350 (2009), 401. doi: 10.1016/j.jmaa.2008.09.073. Google Scholar

[3]

D. Arcoya, L. Boccardo, T. Leonori and A. Porretta, Some elliptic problems with singular natural growth lower order terms,, J. Differential Equations, 249 (2010), 2771. doi: 10.1016/j.jde.2010.05.009. Google Scholar

[4]

D. Arcoya, J. Carmona, T. Leonori, P. J. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations,, J. Differential Equations, 246 (2009), 4006. doi: 10.1016/j.jde.2009.01.016. Google Scholar

[5]

D. Arcoya, J. Carmona and P. J. Martínez-Aparicio, Elliptic obstacle problems with natural growth on the gradient and singular nonlinear terms,, Adv. Nonlinear Stud., 7 (2007), 299. Google Scholar

[6]

D. Arcoya and P. J. Martínez-Aparicio, Quasilinear equations with natural growth,, Rev. Mat. Iberoamericana, 24 (2008), 597. doi: 10.4171/RMI/548. Google Scholar

[7]

D. Arcoya and S. Segura de León, Uniqueness of solutions for some elliptic equations with a quadratic gradient term,, ESAIM: Control, 16 (2010), 327. doi: 10.1051/cocv:2008072. Google Scholar

[8]

L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms,, ESAIM Control Optim. Calc. Var., 14 (2008), 411. doi: 10.1051/cocv:2008031. Google Scholar

[9]

L. Boccardo and T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data,, Nonlinear Anal., 19 (1992), 573. doi: 10.1016/0362-546X(92)90022-7. Google Scholar

[10]

L. Boccardo, T. Leonori, L. Orsina and F. Petitta, Quasilinear elliptic equations with singular quadratic growth terms,, Comm. Contemp. Math., 13 (2011), 607. doi: 10.1142/S0219199711004300. Google Scholar

[11]

L. Boccardo, F. Murat and J. P. Puel, Existence de solutions non bornées pour certaines équations quasi-linéaires,, Portugal. Math., 41 (1982), 507. Google Scholar

[12]

L. Boccardo, F. Murat and J. P. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 213. Google Scholar

[13]

L. Boccardo, F. Murat and J. P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems,, Ann. Mat. Pura Appl., 152 (1988), 183. doi: 10.1007/BF01766148. Google Scholar

[14]

L. Boccardo, S. Segura de León and C. Trombetti, Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term,, J. Math. Pures Appl., 80 (2001), 919. doi: 10.1016/S0021-7824(01)01211-9. Google Scholar

[15]

F. E. Browder, Existence theorems for nonlinear partial differential equations,, Amer. Math. Soc., (1970), 671-688., (1970), 671. Google Scholar

[16]

D. Giachetti and F. Murat, An elliptic problem with a lower order term having singular behaviour,, Boll. Unione Mat. Ital., 2 (2009), 349. Google Scholar

[17]

D. Giachetti and S. Segura de León, Quasilinear stationary problems with a quadratic gradient term having singularities,, J. London Math. Soc., (). Google Scholar

[18]

A. Porretta and S. Segura de León, Nonlinear elliptic equations having a gradient term with natural growth,, J. Math. Pures Appl., 85 (2006), 465. doi: 10.1016/j.matpur.2005.10.009. Google Scholar

[19]

S. Segura de León, Existence and uniqueness for $L^1$ data of some elliptic equations with natural growth,, Adv. Diff. Eq., 8 (2003), 1377. Google Scholar

[1]

Li Yin, Jinghua Yao, Qihu Zhang, Chunshan Zhao. Multiple solutions with constant sign of a Dirichlet problem for a class of elliptic systems with variable exponent growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2207-2226. doi: 10.3934/dcds.2017095

[2]

Juan Pablo Rincón-Zapatero. Hopf-Lax formula for variational problems with non-constant discount. Journal of Geometric Mechanics, 2009, 1 (3) : 357-367. doi: 10.3934/jgm.2009.1.357

[3]

Kais Hamza, Fima C. Klebaner. On nonexistence of non-constant volatility in the Black-Scholes formula. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 829-834. doi: 10.3934/dcdsb.2006.6.829

[4]

Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295

[5]

Isaac A. García, Claudia Valls. The three-dimensional center problem for the zero-Hopf singularity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2027-2046. doi: 10.3934/dcds.2016.36.2027

[6]

V. V. Motreanu. Multiplicity of solutions for variable exponent Dirichlet problem with concave term. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 845-855. doi: 10.3934/dcdss.2012.5.845

[7]

Gisella Croce. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 507-530. doi: 10.3934/dcdss.2012.5.507

[8]

Xin Zhong. Singularity formation to the two-dimensional non-baratropic non-resistive magnetohydrodynamic equations with zero heat conduction in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019209

[9]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[10]

Huxiao Luo, Xianhua Tang, Zu Gao. Sign-changing solutions for non-local elliptic equations with asymptotically linear term. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1147-1159. doi: 10.3934/cpaa.2018055

[11]

Harald Garcke, Kei Fong Lam. Analysis of a Cahn--Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4277-4308. doi: 10.3934/dcds.2017183

[12]

Freddy Dumortier, Santiago Ibáñez, Hiroshi Kokubu, Carles Simó. About the unfolding of a Hopf-zero singularity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4435-4471. doi: 10.3934/dcds.2013.33.4435

[13]

Davide Guidetti. Partial reconstruction of the source term in a linear parabolic initial problem with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5107-5141. doi: 10.3934/dcds.2013.33.5107

[14]

Martino Bardi, Paola Mannucci. On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2006, 5 (4) : 709-731. doi: 10.3934/cpaa.2006.5.709

[15]

Tommaso Leonori, Martina Magliocca. Comparison results for unbounded solutions for a parabolic Cauchy-Dirichlet problem with superlinear gradient growth. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2923-2960. doi: 10.3934/cpaa.2019131

[16]

Kyouhei Wakasa. Blow-up of solutions to semilinear wave equations with non-zero initial data. Conference Publications, 2015, 2015 (special) : 1105-1114. doi: 10.3934/proc.2015.1105

[17]

I. Baldomá, Tere M. Seara. The inner equation for generic analytic unfoldings of the Hopf-zero singularity. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 323-347. doi: 10.3934/dcdsb.2008.10.323

[18]

Ida De Bonis, Daniela Giachetti. Singular parabolic problems with possibly changing sign data. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2047-2064. doi: 10.3934/dcdsb.2014.19.2047

[19]

Roberta Filippucci, Chiara Lini. Existence of solutions for quasilinear Dirichlet problems with gradient terms. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 267-286. doi: 10.3934/dcdss.2019019

[20]

Paola Mannucci. The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction. Communications on Pure & Applied Analysis, 2014, 13 (1) : 119-133. doi: 10.3934/cpaa.2014.13.119

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (6)

[Back to Top]