September  2012, 11(5): 1911-1922. doi: 10.3934/cpaa.2012.11.1911

On the characteristic curvature operator

1. 

Department of Mathematics, Rutgers University, Hill Center for the Mathematical Sciences, 110 Frelinghuysen Rd., Piscataway 08854-8019 NJ, United States

Received  May 2011 Revised  September 2011 Published  March 2012

We introduce the Characteristic Curvature as the curvature of the trajectories of the Hamiltonian vector field with respect to the normal direction to the isoenergetic surfaces; by using the Second Fundamental Form we relate it to the Classical and Levi Mean Curvature. Then we prove existence and uniqueness of viscosity solutions for the related Dirichlet problem and we show the Lipschitz regularity of the solutions under suitable hypotheses. At the end we show that neither Strong Comparison Principle nor Hopf Lemma hold for the Characteristic Curvature Operator.
Citation: Vittorio Martino. On the characteristic curvature operator. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1911-1922. doi: 10.3934/cpaa.2012.11.1911
References:
[1]

E. Bedford and B. Gaveau, Hypersurfaces with bounded Levi form,, Indiana University Journal, 27 (1978), 867. doi: 10.1512/iumj.1978.27.27058. Google Scholar

[2]

A. Bogges, "CR Manifolds and the Tangential Cauchy-Riemann Complex,", Studies in Advanced Mathematics, (1991). Google Scholar

[3]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order Partial differential equations,, Bull. Amer. Soc., 27 (1992), 1. Google Scholar

[4]

F. Da Lio and A. Montanari, Existence and uniqueness of Lipschitz continuous graphs with prescribed Levi curvature,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 23 (2006), 1. Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", second edition, (1983). Google Scholar

[6]

H. Hofer and E. Zehnder, "Symplectic Invariants and Hamiltonian Dynamics,", Birkh\, (1994). Google Scholar

[7]

J. G. Hounie and E. Lanconelli, An Alexander type theorem for Reinhardt domains of $\mathbbC^2$. Recent progress on some problems in several complex variables and partial differential equations,, Contemp. Math., 400 (2006), 129. Google Scholar

[8]

J. G. Hounie and E. Lanconelli, A sphere theorem for a class of Reinhardt domains with constant Levi curvature,, Forum Mathematicum, 20 (2008), 571. doi: 10.1515/FORUM.2008.029. Google Scholar

[9]

H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations,, J. Differential Equations, 83 (1990), 26. doi: 10.1016/0022-0396(90)90068-Z. Google Scholar

[10]

E. Lanconelli and A. Montanari, Pseudoconvex fully nonlinear partial differential operators. Strong comparison theorems,, J. Differential Equations, 202 (2004), 306. doi: 10.1016/j.jde.2004.03.017. Google Scholar

[11]

V. Martino, A symmetry result on Reinhardt domains,, Differential and Integral Equations, 24 (2011), 495. Google Scholar

[12]

V. Martino and A. Montanari, Graphs with prescribed the trace of the Levi form,, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 371. doi: 10.1007/s11565-006-0027-0. Google Scholar

[13]

Z. Slodkowski and G. Tomassini, Weak solutions for the Levi equation and envelope of holomorphy,, J. Funct. Anal., 101 (1991), 392. doi: 10.1016/0022-1236(91)90164-Z. Google Scholar

[14]

Z. Slodkowski, G. Tomassini, The Levi equation in higher dimensions and relationships to the envelope of holomorphy,, Amer. J. Math., 116 (1994), 479. doi: 10.2307/2374937. Google Scholar

show all references

References:
[1]

E. Bedford and B. Gaveau, Hypersurfaces with bounded Levi form,, Indiana University Journal, 27 (1978), 867. doi: 10.1512/iumj.1978.27.27058. Google Scholar

[2]

A. Bogges, "CR Manifolds and the Tangential Cauchy-Riemann Complex,", Studies in Advanced Mathematics, (1991). Google Scholar

[3]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order Partial differential equations,, Bull. Amer. Soc., 27 (1992), 1. Google Scholar

[4]

F. Da Lio and A. Montanari, Existence and uniqueness of Lipschitz continuous graphs with prescribed Levi curvature,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 23 (2006), 1. Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", second edition, (1983). Google Scholar

[6]

H. Hofer and E. Zehnder, "Symplectic Invariants and Hamiltonian Dynamics,", Birkh\, (1994). Google Scholar

[7]

J. G. Hounie and E. Lanconelli, An Alexander type theorem for Reinhardt domains of $\mathbbC^2$. Recent progress on some problems in several complex variables and partial differential equations,, Contemp. Math., 400 (2006), 129. Google Scholar

[8]

J. G. Hounie and E. Lanconelli, A sphere theorem for a class of Reinhardt domains with constant Levi curvature,, Forum Mathematicum, 20 (2008), 571. doi: 10.1515/FORUM.2008.029. Google Scholar

[9]

H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations,, J. Differential Equations, 83 (1990), 26. doi: 10.1016/0022-0396(90)90068-Z. Google Scholar

[10]

E. Lanconelli and A. Montanari, Pseudoconvex fully nonlinear partial differential operators. Strong comparison theorems,, J. Differential Equations, 202 (2004), 306. doi: 10.1016/j.jde.2004.03.017. Google Scholar

[11]

V. Martino, A symmetry result on Reinhardt domains,, Differential and Integral Equations, 24 (2011), 495. Google Scholar

[12]

V. Martino and A. Montanari, Graphs with prescribed the trace of the Levi form,, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 371. doi: 10.1007/s11565-006-0027-0. Google Scholar

[13]

Z. Slodkowski and G. Tomassini, Weak solutions for the Levi equation and envelope of holomorphy,, J. Funct. Anal., 101 (1991), 392. doi: 10.1016/0022-1236(91)90164-Z. Google Scholar

[14]

Z. Slodkowski, G. Tomassini, The Levi equation in higher dimensions and relationships to the envelope of holomorphy,, Amer. J. Math., 116 (1994), 479. doi: 10.2307/2374937. Google Scholar

[1]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[2]

Antonio Vitolo. On the growth of positive entire solutions of elliptic PDEs and their gradients. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1335-1346. doi: 10.3934/dcdss.2014.7.1335

[3]

Inwon C. Kim, Helen K. Lei. Degenerate diffusion with a drift potential: A viscosity solutions approach. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 767-786. doi: 10.3934/dcds.2010.27.767

[4]

Paola Mannucci. The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction. Communications on Pure & Applied Analysis, 2014, 13 (1) : 119-133. doi: 10.3934/cpaa.2014.13.119

[5]

Yuxia Guo, Jianjun Nie. Classification for positive solutions of degenerate elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1457-1475. doi: 10.3934/dcds.2018130

[6]

M. Sango. Weak solutions for a doubly degenerate quasilinear parabolic equation with random forcing. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 885-905. doi: 10.3934/dcdsb.2007.7.885

[7]

Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335

[8]

Pablo Ochoa, Julio Alejo Ruiz. A study of comparison, existence and regularity of viscosity and weak solutions for quasilinear equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1091-1115. doi: 10.3934/cpaa.2019053

[9]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

[10]

Jiabao Su, Rushun Tian. Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 885-904. doi: 10.3934/cpaa.2010.9.885

[11]

Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97

[12]

Antonio Ambrosetti, Zhi-Qiang Wang. Positive solutions to a class of quasilinear elliptic equations on $\mathbb R$. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 55-68. doi: 10.3934/dcds.2003.9.55

[13]

Fang-Fang Liao, Chun-Lei Tang. Four positive solutions of a quasilinear elliptic equation in $ R^N$. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2577-2600. doi: 10.3934/cpaa.2013.12.2577

[14]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[15]

Marcos L. M. Carvalho, José Valdo A. Goncalves, Claudiney Goulart, Olímpio H. Miyagaki. Multiplicity of solutions for a nonhomogeneous quasilinear elliptic problem with critical growth. Communications on Pure & Applied Analysis, 2019, 18 (1) : 83-106. doi: 10.3934/cpaa.2019006

[16]

Dumitru Motreanu. Three solutions with precise sign properties for systems of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 831-843. doi: 10.3934/dcdss.2012.5.831

[17]

Giuseppe Riey, Berardino Sciunzi. One dimensional symmetry of solutions to some anisotropic quasilinear elliptic equations in the plane. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1157-1166. doi: 10.3934/cpaa.2012.11.1157

[18]

Dumitru Motreanu, Viorica V. Motreanu, Abdelkrim Moussaoui. Location of Nodal solutions for quasilinear elliptic equations with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 293-307. doi: 10.3934/dcdss.2018016

[19]

Takahiro Hashimoto. Nonexistence of weak solutions of quasilinear elliptic equations with variable coefficients. Conference Publications, 2009, 2009 (Special) : 349-358. doi: 10.3934/proc.2009.2009.349

[20]

Lynnyngs Kelly Arruda, Francisco Odair de Paiva, Ilma Marques. A remark on multiplicity of positive solutions for a class of quasilinear elliptic systems. Conference Publications, 2011, 2011 (Special) : 112-116. doi: 10.3934/proc.2011.2011.112

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]