September  2012, 11(5): 1911-1922. doi: 10.3934/cpaa.2012.11.1911

On the characteristic curvature operator

1. 

Department of Mathematics, Rutgers University, Hill Center for the Mathematical Sciences, 110 Frelinghuysen Rd., Piscataway 08854-8019 NJ, United States

Received  May 2011 Revised  September 2011 Published  March 2012

We introduce the Characteristic Curvature as the curvature of the trajectories of the Hamiltonian vector field with respect to the normal direction to the isoenergetic surfaces; by using the Second Fundamental Form we relate it to the Classical and Levi Mean Curvature. Then we prove existence and uniqueness of viscosity solutions for the related Dirichlet problem and we show the Lipschitz regularity of the solutions under suitable hypotheses. At the end we show that neither Strong Comparison Principle nor Hopf Lemma hold for the Characteristic Curvature Operator.
Citation: Vittorio Martino. On the characteristic curvature operator. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1911-1922. doi: 10.3934/cpaa.2012.11.1911
References:
[1]

E. Bedford and B. Gaveau, Hypersurfaces with bounded Levi form,, Indiana University Journal, 27 (1978), 867.  doi: 10.1512/iumj.1978.27.27058.  Google Scholar

[2]

A. Bogges, "CR Manifolds and the Tangential Cauchy-Riemann Complex,", Studies in Advanced Mathematics, (1991).   Google Scholar

[3]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order Partial differential equations,, Bull. Amer. Soc., 27 (1992), 1.   Google Scholar

[4]

F. Da Lio and A. Montanari, Existence and uniqueness of Lipschitz continuous graphs with prescribed Levi curvature,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 23 (2006), 1.   Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", second edition, (1983).   Google Scholar

[6]

H. Hofer and E. Zehnder, "Symplectic Invariants and Hamiltonian Dynamics,", Birkh\, (1994).   Google Scholar

[7]

J. G. Hounie and E. Lanconelli, An Alexander type theorem for Reinhardt domains of $\mathbbC^2$. Recent progress on some problems in several complex variables and partial differential equations,, Contemp. Math., 400 (2006), 129.   Google Scholar

[8]

J. G. Hounie and E. Lanconelli, A sphere theorem for a class of Reinhardt domains with constant Levi curvature,, Forum Mathematicum, 20 (2008), 571.  doi: 10.1515/FORUM.2008.029.  Google Scholar

[9]

H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations,, J. Differential Equations, 83 (1990), 26.  doi: 10.1016/0022-0396(90)90068-Z.  Google Scholar

[10]

E. Lanconelli and A. Montanari, Pseudoconvex fully nonlinear partial differential operators. Strong comparison theorems,, J. Differential Equations, 202 (2004), 306.  doi: 10.1016/j.jde.2004.03.017.  Google Scholar

[11]

V. Martino, A symmetry result on Reinhardt domains,, Differential and Integral Equations, 24 (2011), 495.   Google Scholar

[12]

V. Martino and A. Montanari, Graphs with prescribed the trace of the Levi form,, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 371.  doi: 10.1007/s11565-006-0027-0.  Google Scholar

[13]

Z. Slodkowski and G. Tomassini, Weak solutions for the Levi equation and envelope of holomorphy,, J. Funct. Anal., 101 (1991), 392.  doi: 10.1016/0022-1236(91)90164-Z.  Google Scholar

[14]

Z. Slodkowski, G. Tomassini, The Levi equation in higher dimensions and relationships to the envelope of holomorphy,, Amer. J. Math., 116 (1994), 479.  doi: 10.2307/2374937.  Google Scholar

show all references

References:
[1]

E. Bedford and B. Gaveau, Hypersurfaces with bounded Levi form,, Indiana University Journal, 27 (1978), 867.  doi: 10.1512/iumj.1978.27.27058.  Google Scholar

[2]

A. Bogges, "CR Manifolds and the Tangential Cauchy-Riemann Complex,", Studies in Advanced Mathematics, (1991).   Google Scholar

[3]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order Partial differential equations,, Bull. Amer. Soc., 27 (1992), 1.   Google Scholar

[4]

F. Da Lio and A. Montanari, Existence and uniqueness of Lipschitz continuous graphs with prescribed Levi curvature,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 23 (2006), 1.   Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", second edition, (1983).   Google Scholar

[6]

H. Hofer and E. Zehnder, "Symplectic Invariants and Hamiltonian Dynamics,", Birkh\, (1994).   Google Scholar

[7]

J. G. Hounie and E. Lanconelli, An Alexander type theorem for Reinhardt domains of $\mathbbC^2$. Recent progress on some problems in several complex variables and partial differential equations,, Contemp. Math., 400 (2006), 129.   Google Scholar

[8]

J. G. Hounie and E. Lanconelli, A sphere theorem for a class of Reinhardt domains with constant Levi curvature,, Forum Mathematicum, 20 (2008), 571.  doi: 10.1515/FORUM.2008.029.  Google Scholar

[9]

H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations,, J. Differential Equations, 83 (1990), 26.  doi: 10.1016/0022-0396(90)90068-Z.  Google Scholar

[10]

E. Lanconelli and A. Montanari, Pseudoconvex fully nonlinear partial differential operators. Strong comparison theorems,, J. Differential Equations, 202 (2004), 306.  doi: 10.1016/j.jde.2004.03.017.  Google Scholar

[11]

V. Martino, A symmetry result on Reinhardt domains,, Differential and Integral Equations, 24 (2011), 495.   Google Scholar

[12]

V. Martino and A. Montanari, Graphs with prescribed the trace of the Levi form,, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 371.  doi: 10.1007/s11565-006-0027-0.  Google Scholar

[13]

Z. Slodkowski and G. Tomassini, Weak solutions for the Levi equation and envelope of holomorphy,, J. Funct. Anal., 101 (1991), 392.  doi: 10.1016/0022-1236(91)90164-Z.  Google Scholar

[14]

Z. Slodkowski, G. Tomassini, The Levi equation in higher dimensions and relationships to the envelope of holomorphy,, Amer. J. Math., 116 (1994), 479.  doi: 10.2307/2374937.  Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[3]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[4]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[5]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[6]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[7]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[10]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[11]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[12]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[13]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[14]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[15]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[16]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[17]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[18]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[19]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[20]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]