September  2012, 11(5): 1911-1922. doi: 10.3934/cpaa.2012.11.1911

On the characteristic curvature operator

1. 

Department of Mathematics, Rutgers University, Hill Center for the Mathematical Sciences, 110 Frelinghuysen Rd., Piscataway 08854-8019 NJ, United States

Received  May 2011 Revised  September 2011 Published  March 2012

We introduce the Characteristic Curvature as the curvature of the trajectories of the Hamiltonian vector field with respect to the normal direction to the isoenergetic surfaces; by using the Second Fundamental Form we relate it to the Classical and Levi Mean Curvature. Then we prove existence and uniqueness of viscosity solutions for the related Dirichlet problem and we show the Lipschitz regularity of the solutions under suitable hypotheses. At the end we show that neither Strong Comparison Principle nor Hopf Lemma hold for the Characteristic Curvature Operator.
Citation: Vittorio Martino. On the characteristic curvature operator. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1911-1922. doi: 10.3934/cpaa.2012.11.1911
References:
[1]

E. Bedford and B. Gaveau, Hypersurfaces with bounded Levi form, Indiana University Journal, 27 (1978), 867-873. doi: 10.1512/iumj.1978.27.27058.

[2]

A. Bogges, "CR Manifolds and the Tangential Cauchy-Riemann Complex," Studies in Advanced Mathematics, 1991.

[3]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order Partial differential equations, Bull. Amer. Soc., 27 (1992), 1-67.

[4]

F. Da Lio and A. Montanari, Existence and uniqueness of Lipschitz continuous graphs with prescribed Levi curvature, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 1-28.

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," second edition, Springer-Verlag, 1983.

[6]

H. Hofer and E. Zehnder, "Symplectic Invariants and Hamiltonian Dynamics," Birkhäuser Verlag, Basel, 1994

[7]

J. G. Hounie and E. Lanconelli, An Alexander type theorem for Reinhardt domains of $\mathbbC^2$. Recent progress on some problems in several complex variables and partial differential equations, Contemp. Math., Amer. Math. Soc., Providence, RI, 400 (2006), 129-146.

[8]

J. G. Hounie and E. Lanconelli, A sphere theorem for a class of Reinhardt domains with constant Levi curvature, Forum Mathematicum, 20 (2008), 571-586. doi: 10.1515/FORUM.2008.029.

[9]

H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differential Equations, 83 (1990), 26-78. doi: 10.1016/0022-0396(90)90068-Z.

[10]

E. Lanconelli and A. Montanari, Pseudoconvex fully nonlinear partial differential operators. Strong comparison theorems, J. Differential Equations, 202 (2004), 306-331. doi: 10.1016/j.jde.2004.03.017.

[11]

V. Martino, A symmetry result on Reinhardt domains, Differential and Integral Equations, 24 (2011), 495-504.

[12]

V. Martino and A. Montanari, Graphs with prescribed the trace of the Levi form, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 371-382. doi: 10.1007/s11565-006-0027-0.

[13]

Z. Slodkowski and G. Tomassini, Weak solutions for the Levi equation and envelope of holomorphy, J. Funct. Anal., 101 (1991), 392-407. doi: 10.1016/0022-1236(91)90164-Z.

[14]

Z. Slodkowski, G. Tomassini, The Levi equation in higher dimensions and relationships to the envelope of holomorphy, Amer. J. Math., 116 (1994), 479-499. doi: 10.2307/2374937.

show all references

References:
[1]

E. Bedford and B. Gaveau, Hypersurfaces with bounded Levi form, Indiana University Journal, 27 (1978), 867-873. doi: 10.1512/iumj.1978.27.27058.

[2]

A. Bogges, "CR Manifolds and the Tangential Cauchy-Riemann Complex," Studies in Advanced Mathematics, 1991.

[3]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order Partial differential equations, Bull. Amer. Soc., 27 (1992), 1-67.

[4]

F. Da Lio and A. Montanari, Existence and uniqueness of Lipschitz continuous graphs with prescribed Levi curvature, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 1-28.

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," second edition, Springer-Verlag, 1983.

[6]

H. Hofer and E. Zehnder, "Symplectic Invariants and Hamiltonian Dynamics," Birkhäuser Verlag, Basel, 1994

[7]

J. G. Hounie and E. Lanconelli, An Alexander type theorem for Reinhardt domains of $\mathbbC^2$. Recent progress on some problems in several complex variables and partial differential equations, Contemp. Math., Amer. Math. Soc., Providence, RI, 400 (2006), 129-146.

[8]

J. G. Hounie and E. Lanconelli, A sphere theorem for a class of Reinhardt domains with constant Levi curvature, Forum Mathematicum, 20 (2008), 571-586. doi: 10.1515/FORUM.2008.029.

[9]

H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differential Equations, 83 (1990), 26-78. doi: 10.1016/0022-0396(90)90068-Z.

[10]

E. Lanconelli and A. Montanari, Pseudoconvex fully nonlinear partial differential operators. Strong comparison theorems, J. Differential Equations, 202 (2004), 306-331. doi: 10.1016/j.jde.2004.03.017.

[11]

V. Martino, A symmetry result on Reinhardt domains, Differential and Integral Equations, 24 (2011), 495-504.

[12]

V. Martino and A. Montanari, Graphs with prescribed the trace of the Levi form, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 371-382. doi: 10.1007/s11565-006-0027-0.

[13]

Z. Slodkowski and G. Tomassini, Weak solutions for the Levi equation and envelope of holomorphy, J. Funct. Anal., 101 (1991), 392-407. doi: 10.1016/0022-1236(91)90164-Z.

[14]

Z. Slodkowski, G. Tomassini, The Levi equation in higher dimensions and relationships to the envelope of holomorphy, Amer. J. Math., 116 (1994), 479-499. doi: 10.2307/2374937.

[1]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[2]

Phuong Le, Hoang-Hung Vo. Monotonicity and symmetry of positive solutions to degenerate quasilinear elliptic systems in half-spaces and strips. Communications on Pure and Applied Analysis, 2022, 21 (3) : 1027-1048. doi: 10.3934/cpaa.2022008

[3]

Rainer Buckdahn, Christian Keller, Jin Ma, Jianfeng Zhang. Fully nonlinear stochastic and rough PDEs: Classical and viscosity solutions. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 7-. doi: 10.1186/s41546-020-00049-8

[4]

Inwon C. Kim, Helen K. Lei. Degenerate diffusion with a drift potential: A viscosity solutions approach. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 767-786. doi: 10.3934/dcds.2010.27.767

[5]

Antonio Vitolo. On the growth of positive entire solutions of elliptic PDEs and their gradients. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1335-1346. doi: 10.3934/dcdss.2014.7.1335

[6]

Paola Mannucci. The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction. Communications on Pure and Applied Analysis, 2014, 13 (1) : 119-133. doi: 10.3934/cpaa.2014.13.119

[7]

Ibrahim Ekren, Jianfeng Zhang. Pseudo-Markovian viscosity solutions of fully nonlinear degenerate PPDEs. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 6-. doi: 10.1186/s41546-016-0010-3

[8]

Yuxia Guo, Jianjun Nie. Classification for positive solutions of degenerate elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1457-1475. doi: 10.3934/dcds.2018130

[9]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2505-2518. doi: 10.3934/cpaa.2020272

[10]

M. Sango. Weak solutions for a doubly degenerate quasilinear parabolic equation with random forcing. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 885-905. doi: 10.3934/dcdsb.2007.7.885

[11]

Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335

[12]

Yaotian Shen, Youjun Wang. Degenerate coercive quasilinear elliptic equations with subcritical or critical exponents in $ \mathbb{R}^N $. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4667-4697. doi: 10.3934/cpaa.2020197

[13]

Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022075

[14]

Pablo Ochoa, Julio Alejo Ruiz. A study of comparison, existence and regularity of viscosity and weak solutions for quasilinear equations in the Heisenberg group. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1091-1115. doi: 10.3934/cpaa.2019053

[15]

Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control and Related Fields, 2022, 12 (2) : 327-341. doi: 10.3934/mcrf.2021024

[16]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

[17]

Jiabao Su, Rushun Tian. Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Communications on Pure and Applied Analysis, 2010, 9 (4) : 885-904. doi: 10.3934/cpaa.2010.9.885

[18]

Antonio Ambrosetti, Zhi-Qiang Wang. Positive solutions to a class of quasilinear elliptic equations on $\mathbb R$. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 55-68. doi: 10.3934/dcds.2003.9.55

[19]

Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure and Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97

[20]

Fang-Fang Liao, Chun-Lei Tang. Four positive solutions of a quasilinear elliptic equation in $ R^N$. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2577-2600. doi: 10.3934/cpaa.2013.12.2577

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]