September  2012, 11(5): 1923-1933. doi: 10.3934/cpaa.2012.11.1923

Global well-posedness and scattering for Skyrme wave maps

1. 

Department of Mathematics, University of Rochester, Rochester, NY 14627, United States

2. 

Department of Mathematics, Kyoto University, Kyoto 606-8502

3. 

Department of Physics and Astronomy, Department of Mathematics, University of Rochester, Rochester, NY 14627, United States

Received  June 2011 Revised  September 2011 Published  March 2012

We study equivariant solutions for two models ([13]-[15], [1]) arising in high energy physics, which are generalizations of the wave maps theory (i.e., the classical nonlinear $\sigma$ model) in 3 + 1 dimensions. We prove global existence and scattering for small initial data in critical Sobolev-Besov spaces.
Citation: Dan-Andrei Geba, Kenji Nakanishi, Sarada G. Rajeev. Global well-posedness and scattering for Skyrme wave maps. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1923-1933. doi: 10.3934/cpaa.2012.11.1923
References:
[1]

G. Adkins and C. Nappi, Stabilization of chiral solitons via vector mesons,, Phys. Lett. B, 137 (1984), 251.  doi: 10.1016/0370-2693(84)90239-9.  Google Scholar

[2]

P. Bizoń, T. Chmaj and A. Rostworowski, Asymptotic stability of the skyrmion,, Phys. Rev. D, 75 (2007), 121702.  doi: 10.1103/PhysRevD.75.121702.  Google Scholar

[3]

D.-A. Geba and S. G. Rajeev, A continuity argument for a semilinear Skyrme model,, Electron. J. Differential Equations, 2010 (2010), 1.   Google Scholar

[4]

D.-A. Geba and S. G. Rajeev, Nonconcentration of energy for a semilinear Skyrme model,, Ann. Physics, 325 (2010), 2697.  doi: 10.1016/j.aop.2010.07.002.  Google Scholar

[5]

D.-A. Geba and S. G. Rajeev, Energy arguments for the Skyrme model,, work in progress., ().   Google Scholar

[6]

D.-A. Geba and D. da Silva, On the regularity of the $2+1$ dimensional Skyrme model,, preprint, ().   Google Scholar

[7]

M. Gell-Mann and M. Lévy, The axial vector current in beta decay,, Nuovo Cimento, 16 (1960), 705.  doi: 10.1007/BF02859738.  Google Scholar

[8]

F. Gürsey, On the symmetries of strong and weak interactions,, Nuovo Cimento, 16 (1960), 230.  doi: 10.1007/BF02860276.  Google Scholar

[9]

F. Gürsey, On the structure and parity of weak interaction currents,, Ann. Physics, 12 (1961), 91.  doi: 10.1016/0003-4916(61)90147-6.  Google Scholar

[10]

D. Li, Global wellposedness of hedgehog solutions for the ($3+1$) Skyrme model,, preprint, (2011).   Google Scholar

[11]

F. Lin and Y. Yang, Analysis on Faddeev knots and Skyrme solitons: recent progress and open problems,, Perspectives in nonlinear partial differential equations, 446 (2007), 319.  doi: 10.1090/conm/446/08639.  Google Scholar

[12]

J. Shatah, Weak solutions and development of singularities of the SU(2) $\sigma$-model,, Comm. Pure Appl. Math., 41 (1988), 459.  doi: 10.1002/cpa.3160410405.  Google Scholar

[13]

T. H. R. Skyrme, A non-linear field theory,, Proc. Roy. Soc. London Ser. A, 260 (1961), 127.  doi: 10.1098/rspa.1961.0018.  Google Scholar

[14]

T. H. R. Skyrme, Particle states of a quantized meson field,, Proc. Roy. Soc. London Ser. A, 262 (1961), 237.  doi: 10.1098/rspa.1961.0115.  Google Scholar

[15]

T. H. R. Skyrme, A unified field theory of mesons and baryons,, Nuclear Phys., 31 (1962), 556.  doi: 10.1016/0029-5582(62)90775-7.  Google Scholar

[16]

D. Tataru, Local and global results for wave maps I,, Comm. Partial Differential Equations, 23 (1998), 1781.  doi: 10.1080/03605309808821400.  Google Scholar

[17]

N. Turok and D. Spergel, Global texture and the microwave background,, Phys. Rev. Lett., 64 (1990), 2736.  doi: 10.1103/PhysRevLett.64.2736.  Google Scholar

show all references

References:
[1]

G. Adkins and C. Nappi, Stabilization of chiral solitons via vector mesons,, Phys. Lett. B, 137 (1984), 251.  doi: 10.1016/0370-2693(84)90239-9.  Google Scholar

[2]

P. Bizoń, T. Chmaj and A. Rostworowski, Asymptotic stability of the skyrmion,, Phys. Rev. D, 75 (2007), 121702.  doi: 10.1103/PhysRevD.75.121702.  Google Scholar

[3]

D.-A. Geba and S. G. Rajeev, A continuity argument for a semilinear Skyrme model,, Electron. J. Differential Equations, 2010 (2010), 1.   Google Scholar

[4]

D.-A. Geba and S. G. Rajeev, Nonconcentration of energy for a semilinear Skyrme model,, Ann. Physics, 325 (2010), 2697.  doi: 10.1016/j.aop.2010.07.002.  Google Scholar

[5]

D.-A. Geba and S. G. Rajeev, Energy arguments for the Skyrme model,, work in progress., ().   Google Scholar

[6]

D.-A. Geba and D. da Silva, On the regularity of the $2+1$ dimensional Skyrme model,, preprint, ().   Google Scholar

[7]

M. Gell-Mann and M. Lévy, The axial vector current in beta decay,, Nuovo Cimento, 16 (1960), 705.  doi: 10.1007/BF02859738.  Google Scholar

[8]

F. Gürsey, On the symmetries of strong and weak interactions,, Nuovo Cimento, 16 (1960), 230.  doi: 10.1007/BF02860276.  Google Scholar

[9]

F. Gürsey, On the structure and parity of weak interaction currents,, Ann. Physics, 12 (1961), 91.  doi: 10.1016/0003-4916(61)90147-6.  Google Scholar

[10]

D. Li, Global wellposedness of hedgehog solutions for the ($3+1$) Skyrme model,, preprint, (2011).   Google Scholar

[11]

F. Lin and Y. Yang, Analysis on Faddeev knots and Skyrme solitons: recent progress and open problems,, Perspectives in nonlinear partial differential equations, 446 (2007), 319.  doi: 10.1090/conm/446/08639.  Google Scholar

[12]

J. Shatah, Weak solutions and development of singularities of the SU(2) $\sigma$-model,, Comm. Pure Appl. Math., 41 (1988), 459.  doi: 10.1002/cpa.3160410405.  Google Scholar

[13]

T. H. R. Skyrme, A non-linear field theory,, Proc. Roy. Soc. London Ser. A, 260 (1961), 127.  doi: 10.1098/rspa.1961.0018.  Google Scholar

[14]

T. H. R. Skyrme, Particle states of a quantized meson field,, Proc. Roy. Soc. London Ser. A, 262 (1961), 237.  doi: 10.1098/rspa.1961.0115.  Google Scholar

[15]

T. H. R. Skyrme, A unified field theory of mesons and baryons,, Nuclear Phys., 31 (1962), 556.  doi: 10.1016/0029-5582(62)90775-7.  Google Scholar

[16]

D. Tataru, Local and global results for wave maps I,, Comm. Partial Differential Equations, 23 (1998), 1781.  doi: 10.1080/03605309808821400.  Google Scholar

[17]

N. Turok and D. Spergel, Global texture and the microwave background,, Phys. Rev. Lett., 64 (1990), 2736.  doi: 10.1103/PhysRevLett.64.2736.  Google Scholar

[1]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[2]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[3]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[4]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[5]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[6]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[7]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[8]

Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157

[9]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[10]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[11]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[12]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[13]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[14]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[15]

Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020396

[16]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[17]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[18]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[19]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[20]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (4)

[Back to Top]