-
Previous Article
Symmetries and blow-up phenomena for a Dirichlet problem with a large parameter
- CPAA Home
- This Issue
-
Next Article
On the characteristic curvature operator
Global well-posedness and scattering for Skyrme wave maps
1. | Department of Mathematics, University of Rochester, Rochester, NY 14627, United States |
2. | Department of Mathematics, Kyoto University, Kyoto 606-8502 |
3. | Department of Physics and Astronomy, Department of Mathematics, University of Rochester, Rochester, NY 14627, United States |
References:
[1] |
G. Adkins and C. Nappi, Stabilization of chiral solitons via vector mesons,, Phys. Lett. B, 137 (1984), 251.
doi: 10.1016/0370-2693(84)90239-9. |
[2] |
P. Bizoń, T. Chmaj and A. Rostworowski, Asymptotic stability of the skyrmion,, Phys. Rev. D, 75 (2007), 121702.
doi: 10.1103/PhysRevD.75.121702. |
[3] |
D.-A. Geba and S. G. Rajeev, A continuity argument for a semilinear Skyrme model,, Electron. J. Differential Equations, 2010 (2010), 1.
|
[4] |
D.-A. Geba and S. G. Rajeev, Nonconcentration of energy for a semilinear Skyrme model,, Ann. Physics, 325 (2010), 2697.
doi: 10.1016/j.aop.2010.07.002. |
[5] |
D.-A. Geba and S. G. Rajeev, Energy arguments for the Skyrme model,, work in progress., (). Google Scholar |
[6] |
D.-A. Geba and D. da Silva, On the regularity of the $2+1$ dimensional Skyrme model,, preprint, (). Google Scholar |
[7] |
M. Gell-Mann and M. Lévy, The axial vector current in beta decay,, Nuovo Cimento, 16 (1960), 705.
doi: 10.1007/BF02859738. |
[8] |
F. Gürsey, On the symmetries of strong and weak interactions,, Nuovo Cimento, 16 (1960), 230.
doi: 10.1007/BF02860276. |
[9] |
F. Gürsey, On the structure and parity of weak interaction currents,, Ann. Physics, 12 (1961), 91.
doi: 10.1016/0003-4916(61)90147-6. |
[10] |
D. Li, Global wellposedness of hedgehog solutions for the ($3+1$) Skyrme model,, preprint, (2011). Google Scholar |
[11] |
F. Lin and Y. Yang, Analysis on Faddeev knots and Skyrme solitons: recent progress and open problems,, Perspectives in nonlinear partial differential equations, 446 (2007), 319.
doi: 10.1090/conm/446/08639. |
[12] |
J. Shatah, Weak solutions and development of singularities of the SU(2) $\sigma$-model,, Comm. Pure Appl. Math., 41 (1988), 459.
doi: 10.1002/cpa.3160410405. |
[13] |
T. H. R. Skyrme, A non-linear field theory,, Proc. Roy. Soc. London Ser. A, 260 (1961), 127.
doi: 10.1098/rspa.1961.0018. |
[14] |
T. H. R. Skyrme, Particle states of a quantized meson field,, Proc. Roy. Soc. London Ser. A, 262 (1961), 237.
doi: 10.1098/rspa.1961.0115. |
[15] |
T. H. R. Skyrme, A unified field theory of mesons and baryons,, Nuclear Phys., 31 (1962), 556.
doi: 10.1016/0029-5582(62)90775-7. |
[16] |
D. Tataru, Local and global results for wave maps I,, Comm. Partial Differential Equations, 23 (1998), 1781.
doi: 10.1080/03605309808821400. |
[17] |
N. Turok and D. Spergel, Global texture and the microwave background,, Phys. Rev. Lett., 64 (1990), 2736.
doi: 10.1103/PhysRevLett.64.2736. |
show all references
References:
[1] |
G. Adkins and C. Nappi, Stabilization of chiral solitons via vector mesons,, Phys. Lett. B, 137 (1984), 251.
doi: 10.1016/0370-2693(84)90239-9. |
[2] |
P. Bizoń, T. Chmaj and A. Rostworowski, Asymptotic stability of the skyrmion,, Phys. Rev. D, 75 (2007), 121702.
doi: 10.1103/PhysRevD.75.121702. |
[3] |
D.-A. Geba and S. G. Rajeev, A continuity argument for a semilinear Skyrme model,, Electron. J. Differential Equations, 2010 (2010), 1.
|
[4] |
D.-A. Geba and S. G. Rajeev, Nonconcentration of energy for a semilinear Skyrme model,, Ann. Physics, 325 (2010), 2697.
doi: 10.1016/j.aop.2010.07.002. |
[5] |
D.-A. Geba and S. G. Rajeev, Energy arguments for the Skyrme model,, work in progress., (). Google Scholar |
[6] |
D.-A. Geba and D. da Silva, On the regularity of the $2+1$ dimensional Skyrme model,, preprint, (). Google Scholar |
[7] |
M. Gell-Mann and M. Lévy, The axial vector current in beta decay,, Nuovo Cimento, 16 (1960), 705.
doi: 10.1007/BF02859738. |
[8] |
F. Gürsey, On the symmetries of strong and weak interactions,, Nuovo Cimento, 16 (1960), 230.
doi: 10.1007/BF02860276. |
[9] |
F. Gürsey, On the structure and parity of weak interaction currents,, Ann. Physics, 12 (1961), 91.
doi: 10.1016/0003-4916(61)90147-6. |
[10] |
D. Li, Global wellposedness of hedgehog solutions for the ($3+1$) Skyrme model,, preprint, (2011). Google Scholar |
[11] |
F. Lin and Y. Yang, Analysis on Faddeev knots and Skyrme solitons: recent progress and open problems,, Perspectives in nonlinear partial differential equations, 446 (2007), 319.
doi: 10.1090/conm/446/08639. |
[12] |
J. Shatah, Weak solutions and development of singularities of the SU(2) $\sigma$-model,, Comm. Pure Appl. Math., 41 (1988), 459.
doi: 10.1002/cpa.3160410405. |
[13] |
T. H. R. Skyrme, A non-linear field theory,, Proc. Roy. Soc. London Ser. A, 260 (1961), 127.
doi: 10.1098/rspa.1961.0018. |
[14] |
T. H. R. Skyrme, Particle states of a quantized meson field,, Proc. Roy. Soc. London Ser. A, 262 (1961), 237.
doi: 10.1098/rspa.1961.0115. |
[15] |
T. H. R. Skyrme, A unified field theory of mesons and baryons,, Nuclear Phys., 31 (1962), 556.
doi: 10.1016/0029-5582(62)90775-7. |
[16] |
D. Tataru, Local and global results for wave maps I,, Comm. Partial Differential Equations, 23 (1998), 1781.
doi: 10.1080/03605309808821400. |
[17] |
N. Turok and D. Spergel, Global texture and the microwave background,, Phys. Rev. Lett., 64 (1990), 2736.
doi: 10.1103/PhysRevLett.64.2736. |
[1] |
Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021009 |
[2] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[3] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[4] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[5] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[6] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[7] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[8] |
Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157 |
[9] |
Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021023 |
[10] |
Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309 |
[11] |
Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118 |
[12] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020466 |
[13] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
[14] |
Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051 |
[15] |
Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020396 |
[16] |
Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046 |
[17] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[18] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[19] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[20] |
Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021012 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]