• Previous Article
    A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature
  • CPAA Home
  • This Issue
  • Next Article
    Symmetries and blow-up phenomena for a Dirichlet problem with a large parameter
September  2012, 11(5): 1959-1982. doi: 10.3934/cpaa.2012.11.1959

Solvability and asymptotic analysis of a generalization of the Caginalp phase field system

1. 

Dipartimento di Matematica ``F. Casorati", Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy

2. 

Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, I-27100 Pavia

Received  July 2011 Revised  November 2011 Published  March 2012

We study a diffusion model of phase field type, which consists of a system of two partial differential equations involving as variables the thermal displacement, that is basically the time integration of temperature, and the order parameter. Our analysis covers the case of a non-smooth (maximal monotone) graph along with a smooth anti-monotone function in the phase equation. Thus, the system turns out a generalization of the well-known Caginalp phase field model for phase transitions when including a diffusive term for the thermal displacement in the balance equation. Systems of this kind have been extensively studied by Miranville and Quintanilla. We prove existence and uniqueness of a weak solution to the initial-boundary value problem, as well as various regularity results ensuring that the solution is strong and with bounded components. Then we investigate the asymptotic behaviour of the solutions as the coefficient of the diffusive term for the thermal displacement tends to zero and prove convergence to the Caginalp phase field system as well as error estimates for the difference of the solutions.
Citation: Giacomo Canevari, Pierluigi Colli. Solvability and asymptotic analysis of a generalization of the Caginalp phase field system. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1959-1982. doi: 10.3934/cpaa.2012.11.1959
References:
[1]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,'' Noordhoff, Leyden, 1976.

[2]

H. Brezis, "Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,'' North-Holland Math. Stud. 5, North-Holland, Amsterdam, 1973.

[3]

G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245. doi: 10.1007/BF00254827.

[4]

P. Colli, G. Gilardi and M. Grasselli, Global smooth solution to the standard phase field model with memory, Adv. Differential Equations, 2 (1997), 453-486.

[5]

P. Colli, G. Gilardi and M. Grasselli, Well-posedness of the weak formulation for the phase-field model with memory, Adv. Differential Equations, 2 (1997), 487-508.

[6]

G. Duvaut, Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degré), C. R. Acad. Sci. Paris S閞. A-B, 276 (1973), A1461-A1463.

[7]

M. Frémond, "Non-smooth Thermomechanics,'' Springer-Verlag, Berlin, 2002.

[8]

A.E. Green and P.M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Roy. Soc. Lond. A, 432 (1991), 171-194. doi: 10.1098/rspa.1991.0012.

[9]

A.E. Green and P.M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253-264. doi: 10.1080/01495739208946136.

[10]

A.E. Green and P.M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189-208. doi: 10.1007/BF00044969.

[11]

A.E. Green and P.M. Naghdi, A new thermoviscous theory for fluids, J. Non-Newtonian Fluid Mech., 56 (1995), 289-306. doi: 10.1016/0377-0257(94)01288-S.

[12]

O.A. Ladyženskaja, V.A. Solonnikov, and N.N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,'' Trans. Amer. Math. Soc. 23, Amer. Math. Soc., Providence, RI, 1968.

[13]

J.L. Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,'' Dunod Gauthier-Villars, Paris, 1969.

[14]

A. Miranville and R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal., 71 (2009), 2278-2290. doi: 10.1016/j.na.2009.01.061.

[15]

A. Miranville and R. Quintanilla, Some generalizations of the Caginalp phase-field system, Appl. Anal., 88 (2009), 877-894. doi: 10.1080/00036810903042182.

[16]

A. Miranville and R. Quintanilla, A Caginalp phase-field system with a nonlinear coupling, Nonlinear Anal. Real World Appl., 11 (2010), 2849-2861. doi: 10.1016/j.nonrwa.2009.10.008.

[17]

A. Miranville and R. Quintanilla, A type III phase-field system with a logarithmic potential, Appl. Math. Lett., 24 (2011), 1003-1008. doi: 10.1016/j.aml.2011.01.016.

[18]

J. Simon, Compact sets in the space $L^p(0,T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360.

show all references

References:
[1]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,'' Noordhoff, Leyden, 1976.

[2]

H. Brezis, "Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,'' North-Holland Math. Stud. 5, North-Holland, Amsterdam, 1973.

[3]

G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245. doi: 10.1007/BF00254827.

[4]

P. Colli, G. Gilardi and M. Grasselli, Global smooth solution to the standard phase field model with memory, Adv. Differential Equations, 2 (1997), 453-486.

[5]

P. Colli, G. Gilardi and M. Grasselli, Well-posedness of the weak formulation for the phase-field model with memory, Adv. Differential Equations, 2 (1997), 487-508.

[6]

G. Duvaut, Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degré), C. R. Acad. Sci. Paris S閞. A-B, 276 (1973), A1461-A1463.

[7]

M. Frémond, "Non-smooth Thermomechanics,'' Springer-Verlag, Berlin, 2002.

[8]

A.E. Green and P.M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Roy. Soc. Lond. A, 432 (1991), 171-194. doi: 10.1098/rspa.1991.0012.

[9]

A.E. Green and P.M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253-264. doi: 10.1080/01495739208946136.

[10]

A.E. Green and P.M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189-208. doi: 10.1007/BF00044969.

[11]

A.E. Green and P.M. Naghdi, A new thermoviscous theory for fluids, J. Non-Newtonian Fluid Mech., 56 (1995), 289-306. doi: 10.1016/0377-0257(94)01288-S.

[12]

O.A. Ladyženskaja, V.A. Solonnikov, and N.N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,'' Trans. Amer. Math. Soc. 23, Amer. Math. Soc., Providence, RI, 1968.

[13]

J.L. Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,'' Dunod Gauthier-Villars, Paris, 1969.

[14]

A. Miranville and R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal., 71 (2009), 2278-2290. doi: 10.1016/j.na.2009.01.061.

[15]

A. Miranville and R. Quintanilla, Some generalizations of the Caginalp phase-field system, Appl. Anal., 88 (2009), 877-894. doi: 10.1080/00036810903042182.

[16]

A. Miranville and R. Quintanilla, A Caginalp phase-field system with a nonlinear coupling, Nonlinear Anal. Real World Appl., 11 (2010), 2849-2861. doi: 10.1016/j.nonrwa.2009.10.008.

[17]

A. Miranville and R. Quintanilla, A type III phase-field system with a logarithmic potential, Appl. Math. Lett., 24 (2011), 1003-1008. doi: 10.1016/j.aml.2011.01.016.

[18]

J. Simon, Compact sets in the space $L^p(0,T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360.

[1]

Pavel Krejčí, Elisabetta Rocca. Well-posedness of an extended model for water-ice phase transitions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 439-460. doi: 10.3934/dcdss.2013.6.439

[2]

Michele Colturato. Well-posedness and longtime behavior for a singular phase field system with perturbed phase dynamics. Evolution Equations and Control Theory, 2018, 7 (2) : 217-245. doi: 10.3934/eect.2018011

[3]

Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 37-54. doi: 10.3934/dcdss.2017002

[4]

S. Gatti, Elena Sartori. Well-posedness results for phase field systems with memory effects in the order parameter dynamics. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 705-726. doi: 10.3934/dcds.2003.9.705

[5]

Hao Wu, Yuchen Yang. Well-posedness of a hydrodynamic phase-field system for functionalized membrane-fluid interaction. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2345-2389. doi: 10.3934/dcdss.2022102

[6]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[7]

Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036

[8]

Xiaoli Wang, Peter Kloeden, Meihua Yang. Asymptotic behaviour of a neural field lattice model with delays. Electronic Research Archive, 2020, 28 (2) : 1037-1048. doi: 10.3934/era.2020056

[9]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

[10]

Jan Haskovec. Cucker-Smale model with finite speed of information propagation: well-posedness, flocking and mean-field limit. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022033

[11]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[12]

Elissar Nasreddine. Well-posedness for a model of individual clustering. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2647-2668. doi: 10.3934/dcdsb.2013.18.2647

[13]

David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113

[14]

Razvan C. Fetecau, Francesco S. Patacchini. Well-posedness of an interaction model on Riemannian manifolds. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022114

[15]

Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090

[16]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

[17]

Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903

[18]

Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156

[19]

Hongwei Wang, Amin Esfahani. Well-posedness and asymptotic behavior of the dissipative Ostrovsky equation. Evolution Equations and Control Theory, 2019, 8 (4) : 709-735. doi: 10.3934/eect.2019035

[20]

Seung-Yeal Ha, Jinyeong Park, Xiongtao Zhang. A global well-posedness and asymptotic dynamics of the kinetic Winfree equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1317-1344. doi: 10.3934/dcdsb.2019229

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]