• Previous Article
    A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature
  • CPAA Home
  • This Issue
  • Next Article
    Symmetries and blow-up phenomena for a Dirichlet problem with a large parameter
September  2012, 11(5): 1959-1982. doi: 10.3934/cpaa.2012.11.1959

Solvability and asymptotic analysis of a generalization of the Caginalp phase field system

1. 

Dipartimento di Matematica ``F. Casorati", Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy

2. 

Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, I-27100 Pavia

Received  July 2011 Revised  November 2011 Published  March 2012

We study a diffusion model of phase field type, which consists of a system of two partial differential equations involving as variables the thermal displacement, that is basically the time integration of temperature, and the order parameter. Our analysis covers the case of a non-smooth (maximal monotone) graph along with a smooth anti-monotone function in the phase equation. Thus, the system turns out a generalization of the well-known Caginalp phase field model for phase transitions when including a diffusive term for the thermal displacement in the balance equation. Systems of this kind have been extensively studied by Miranville and Quintanilla. We prove existence and uniqueness of a weak solution to the initial-boundary value problem, as well as various regularity results ensuring that the solution is strong and with bounded components. Then we investigate the asymptotic behaviour of the solutions as the coefficient of the diffusive term for the thermal displacement tends to zero and prove convergence to the Caginalp phase field system as well as error estimates for the difference of the solutions.
Citation: Giacomo Canevari, Pierluigi Colli. Solvability and asymptotic analysis of a generalization of the Caginalp phase field system. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1959-1982. doi: 10.3934/cpaa.2012.11.1959
References:
[1]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,'', Noord\-hoff, (1976).   Google Scholar

[2]

H. Brezis, "Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,'', North-Holland Math. Stud. {\bf 5}, 5 (1973).   Google Scholar

[3]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Rational Mech. Anal., 92 (1986), 205.  doi: 10.1007/BF00254827.  Google Scholar

[4]

P. Colli, G. Gilardi and M. Grasselli, Global smooth solution to the standard phase field model with memory,, Adv. Differential Equations, 2 (1997), 453.   Google Scholar

[5]

P. Colli, G. Gilardi and M. Grasselli, Well-posedness of the weak formulation for the phase-field model with memory,, Adv. Differential Equations, 2 (1997), 487.   Google Scholar

[6]

G. Duvaut, Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degré),, C. R. Acad. Sci. Paris S閞. A-B, 276 (1973).   Google Scholar

[7]

M. Frémond, "Non-smooth Thermomechanics,'', Springer-Verlag, (2002).   Google Scholar

[8]

A.E. Green and P.M. Naghdi, A re-examination of the basic postulates of thermomechanics,, Proc. Roy. Soc. Lond. A, 432 (1991), 171.  doi: 10.1098/rspa.1991.0012.  Google Scholar

[9]

A.E. Green and P.M. Naghdi, On undamped heat waves in an elastic solid,, J. Thermal Stresses, 15 (1992), 253.  doi: 10.1080/01495739208946136.  Google Scholar

[10]

A.E. Green and P.M. Naghdi, Thermoelasticity without energy dissipation,, J. Elasticity, 31 (1993), 189.  doi: 10.1007/BF00044969.  Google Scholar

[11]

A.E. Green and P.M. Naghdi, A new thermoviscous theory for fluids,, J. Non-Newtonian Fluid Mech., 56 (1995), 289.  doi: 10.1016/0377-0257(94)01288-S.  Google Scholar

[12]

O.A. Ladyženskaja, V.A. Solonnikov, and N.N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,'', Trans. Amer. Math. Soc. {\bf 23}, 23 (1968).   Google Scholar

[13]

J.L. Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,'', Dunod Gauthier-Villars, (1969).   Google Scholar

[14]

A. Miranville and R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law,, Nonlinear Anal., 71 (2009), 2278.  doi: 10.1016/j.na.2009.01.061.  Google Scholar

[15]

A. Miranville and R. Quintanilla, Some generalizations of the Caginalp phase-field system,, Appl. Anal., 88 (2009), 877.  doi: 10.1080/00036810903042182.  Google Scholar

[16]

A. Miranville and R. Quintanilla, A Caginalp phase-field system with a nonlinear coupling,, Nonlinear Anal. Real World Appl., 11 (2010), 2849.  doi: 10.1016/j.nonrwa.2009.10.008.  Google Scholar

[17]

A. Miranville and R. Quintanilla, A type III phase-field system with a logarithmic potential,, Appl. Math. Lett., 24 (2011), 1003.  doi: 10.1016/j.aml.2011.01.016.  Google Scholar

[18]

J. Simon, Compact sets in the space $L^p(0,T; B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

show all references

References:
[1]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,'', Noord\-hoff, (1976).   Google Scholar

[2]

H. Brezis, "Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,'', North-Holland Math. Stud. {\bf 5}, 5 (1973).   Google Scholar

[3]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Rational Mech. Anal., 92 (1986), 205.  doi: 10.1007/BF00254827.  Google Scholar

[4]

P. Colli, G. Gilardi and M. Grasselli, Global smooth solution to the standard phase field model with memory,, Adv. Differential Equations, 2 (1997), 453.   Google Scholar

[5]

P. Colli, G. Gilardi and M. Grasselli, Well-posedness of the weak formulation for the phase-field model with memory,, Adv. Differential Equations, 2 (1997), 487.   Google Scholar

[6]

G. Duvaut, Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degré),, C. R. Acad. Sci. Paris S閞. A-B, 276 (1973).   Google Scholar

[7]

M. Frémond, "Non-smooth Thermomechanics,'', Springer-Verlag, (2002).   Google Scholar

[8]

A.E. Green and P.M. Naghdi, A re-examination of the basic postulates of thermomechanics,, Proc. Roy. Soc. Lond. A, 432 (1991), 171.  doi: 10.1098/rspa.1991.0012.  Google Scholar

[9]

A.E. Green and P.M. Naghdi, On undamped heat waves in an elastic solid,, J. Thermal Stresses, 15 (1992), 253.  doi: 10.1080/01495739208946136.  Google Scholar

[10]

A.E. Green and P.M. Naghdi, Thermoelasticity without energy dissipation,, J. Elasticity, 31 (1993), 189.  doi: 10.1007/BF00044969.  Google Scholar

[11]

A.E. Green and P.M. Naghdi, A new thermoviscous theory for fluids,, J. Non-Newtonian Fluid Mech., 56 (1995), 289.  doi: 10.1016/0377-0257(94)01288-S.  Google Scholar

[12]

O.A. Ladyženskaja, V.A. Solonnikov, and N.N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,'', Trans. Amer. Math. Soc. {\bf 23}, 23 (1968).   Google Scholar

[13]

J.L. Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,'', Dunod Gauthier-Villars, (1969).   Google Scholar

[14]

A. Miranville and R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law,, Nonlinear Anal., 71 (2009), 2278.  doi: 10.1016/j.na.2009.01.061.  Google Scholar

[15]

A. Miranville and R. Quintanilla, Some generalizations of the Caginalp phase-field system,, Appl. Anal., 88 (2009), 877.  doi: 10.1080/00036810903042182.  Google Scholar

[16]

A. Miranville and R. Quintanilla, A Caginalp phase-field system with a nonlinear coupling,, Nonlinear Anal. Real World Appl., 11 (2010), 2849.  doi: 10.1016/j.nonrwa.2009.10.008.  Google Scholar

[17]

A. Miranville and R. Quintanilla, A type III phase-field system with a logarithmic potential,, Appl. Math. Lett., 24 (2011), 1003.  doi: 10.1016/j.aml.2011.01.016.  Google Scholar

[18]

J. Simon, Compact sets in the space $L^p(0,T; B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[3]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[4]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[5]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[6]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[7]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[8]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[9]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[10]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[12]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[13]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[14]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[15]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[16]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[19]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[20]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]