\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature

Abstract / Introduction Related Papers Cited by
  • We consider a singular or degenerate elliptic problem in a proper domain and we prove a gradient bound and some symmetry results.
    Mathematics Subject Classification: Primary: 35J92; Secondary: 5J70, 35J75.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. S. Antman, Nonuniqueness of equilibrium states for bars in tension, J. Math. Anal. Appl., 44 (1973), 333-349.doi: 10.1016/0022-247X(73)90063-2.

    [2]

    Luis Caffarelli, Nicola Garofalo and Fausto Segala, A gradient bound for entire solutions of quasi-linear equations and its conseguences, Comm. Pure Appl. Math., 47 (1994), 1457-1473.doi: 10.1002/cpa.3160471103.

    [3]

    Diego Castellaneta, Stima puntuale del gradiente per soluzioni di equazioni ellittiche singolari o degeneri in domini propri con curvatura media nonnegativa, avaliable online at http://www.math.utexas.edu/mp$\_$arc/, Tesi di laurea specialistica, Università di Roma Tor Vergata, 2009.

    [4]

    Emmanuele DiBenedetto, "Degerate Parabolic Equation," Springer-Verlag, 1991.

    [5]

    James Eells, The surfaces of Delaunay, Math. Intelligencer, 9 (1987), 53-57.doi: 10.1007/BF03023575.

    [6]

    Alberto Farina, Berardino Sciunzi and Enrico Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 741-791.

    [7]

    Alberto Farina and Enrico Valdinoci, Geometry of quasiminimal phase transitions, Calc. Var. Partial Differ. Equ., 33 (2008), 1-35.doi: 10.1007/s00526-007-0146-1.

    [8]

    Alberto Farina and Enrico Valdinoci, A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature, Adv. Math., 225 (2010), 2808-2827.doi: 10.1016/j.aim.2010.05.008.

    [9]

    Alberto Farina and Enrico Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems, Arch. Ration. Mech. Anal., 195 (2010), 1025-1058.doi: 10.1007/s00205-009-0227-8.

    [10]

    David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, volume 224 of "Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]," Springer-Verlag, Berlin, second edition, 1983.

    [11]

    Lars Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Reprint of the second (1990) edition. Classics in Mathematics. Springer-Verlag, Berlin, 2003.

    [12]

    Lars Hörmander, "The Analysis of Linear Partial Differential Operators. II. Differential Operators with Constant Coefficients," Reprint of the 1983 original. Classics in Mathematics. Springer-Verlag, Berlin, 2005.

    [13]

    Bernd Kawohl, "Symmetrization-or how to Prove Symmetry of Solutions to a PDE," Partial differential equations (Praha, 1998), 214-229, Res. Notes Math., 406, Chapman & Hall/CRC, Boca Raton, FL, 2000.

    [14]

    Olga A. Ladyzhenskaya and Nina N. Ural'tseva, "Linear and Quasilinear Elliptic Equations," translated from the Russian by Scripta Technica, Academic Press, New York-London, 1968.

    [15]

    Gary M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.doi: 10.1016/0362-546X(88)90053-3.

    [16]

    Rafael de la Llave and Enrico Valdinoci, Ground states and critical points for generalized Frankel-Kontorova models in $Z^d$, Nonlinearity, 20 (2007), 2409-2424.doi: 10.1088/0951-7715/20/10/008.

    [17]

    Luciano Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math., 38 (1985), 679-684.doi: 10.1002/cpa.3160380515.

    [18]

    Lawrence E. Payne, Some remarks on maximum principles, J. Analyse Math., 30 (1976), 421-433.doi: 10.1007/BF02786729.

    [19]

    Patrizia Pucci and James Serrin, "The Maximum Principle," Progress in Nonlinear Differential Equations and their Applications, 73. Birkhäuser Verlag, Basel, 2007.

    [20]

    Renè P. Sperb, "Maximum Principles and Their Applications," volume 157 of Mathematics in Science and Engineering. Academic Press Inc, [Harcourt Brace Jovanovich Publishers], New York, 1981.

    [21]

    Gudlaugur Thorbergsson, A survey on isoparametric hypersurfaces and their generalizations, Handbook of differential geometry, Vol. I, 963-995, North-Holland, Amsterdam, 2000.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(70) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return