• Previous Article
    Double resonance for Dirichlet problems with unbounded indefinite potential and combined nonlinearities
  • CPAA Home
  • This Issue
  • Next Article
    Solvability and asymptotic analysis of a generalization of the Caginalp phase field system
September  2012, 11(5): 1983-2003. doi: 10.3934/cpaa.2012.11.1983

A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature

1. 

Università di Roma Tor Vergata, Dipartimento di Matematica, via della ricerca scienti ca, 1, I-00133 Rome, Italy

2. 

LAMFA – CNRS UMR 6140, Université de Picardie Jules Verne, 33, rue Saint-Leu 80039 Amiens CEDEX 1

3. 

Università di Roma Tor Vergata, Dipartimento di Matematica, Via della Ricerca Scientifica, I-00133 Rome

Received  June 2011 Revised  November 2011 Published  March 2012

We consider a singular or degenerate elliptic problem in a proper domain and we prove a gradient bound and some symmetry results.
Citation: Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983
References:
[1]

S. S. Antman, Nonuniqueness of equilibrium states for bars in tension,, J. Math. Anal. Appl., 44 (1973), 333.  doi: 10.1016/0022-247X(73)90063-2.  Google Scholar

[2]

Luis Caffarelli, Nicola Garofalo and Fausto Segala, A gradient bound for entire solutions of quasi-linear equations and its conseguences,, Comm. Pure Appl. Math., 47 (1994), 1457.  doi: 10.1002/cpa.3160471103.  Google Scholar

[3]

Diego Castellaneta, Stima puntuale del gradiente per soluzioni di equazioni ellittiche singolari o degeneri in domini propri con curvatura media nonnegativa,, avaliable online at {\tt http://www.math.utexas.edu/mp$\_$arc/}, (2009).   Google Scholar

[4]

Emmanuele DiBenedetto, "Degerate Parabolic Equation,", Springer-Verlag, (1991).   Google Scholar

[5]

James Eells, The surfaces of Delaunay,, Math. Intelligencer, 9 (1987), 53.  doi: 10.1007/BF03023575.  Google Scholar

[6]

Alberto Farina, Berardino Sciunzi and Enrico Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 741.   Google Scholar

[7]

Alberto Farina and Enrico Valdinoci, Geometry of quasiminimal phase transitions,, Calc. Var. Partial Differ. Equ., 33 (2008), 1.  doi: 10.1007/s00526-007-0146-1.  Google Scholar

[8]

Alberto Farina and Enrico Valdinoci, A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature,, Adv. Math., 225 (2010), 2808.  doi: 10.1016/j.aim.2010.05.008.  Google Scholar

[9]

Alberto Farina and Enrico Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems,, Arch. Ration. Mech. Anal., 195 (2010), 1025.  doi: 10.1007/s00205-009-0227-8.  Google Scholar

[10]

David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order,, volume 224 of, (1983).   Google Scholar

[11]

Lars Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis,, Reprint of the second (1990) edition. Classics in Mathematics. Springer-Verlag, (1990).   Google Scholar

[12]

Lars Hörmander, "The Analysis of Linear Partial Differential Operators. II. Differential Operators with Constant Coefficients,", Reprint of the 1983 original. Classics in Mathematics. Springer-Verlag, (1983).   Google Scholar

[13]

Bernd Kawohl, "Symmetrization-or how to Prove Symmetry of Solutions to a PDE,", Partial differential equations (Praha, (1998), 214.   Google Scholar

[14]

Olga A. Ladyzhenskaya and Nina N. Ural'tseva, "Linear and Quasilinear Elliptic Equations,", translated from the Russian by Scripta Technica, (1968).   Google Scholar

[15]

Gary M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations,, Nonlinear Anal., 12 (1988), 1203.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[16]

Rafael de la Llave and Enrico Valdinoci, Ground states and critical points for generalized Frankel-Kontorova models in $Z^d$,, Nonlinearity, 20 (2007), 2409.  doi: 10.1088/0951-7715/20/10/008.  Google Scholar

[17]

Luciano Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations,, Comm. Pure Appl. Math., 38 (1985), 679.  doi: 10.1002/cpa.3160380515.  Google Scholar

[18]

Lawrence E. Payne, Some remarks on maximum principles,, J. Analyse Math., 30 (1976), 421.  doi: 10.1007/BF02786729.  Google Scholar

[19]

Patrizia Pucci and James Serrin, "The Maximum Principle,", Progress in Nonlinear Differential Equations and their Applications, (2007).   Google Scholar

[20]

Renè P. Sperb, "Maximum Principles and Their Applications,", volume 157 of Mathematics in Science and Engineering. Academic Press Inc, (1981).   Google Scholar

[21]

Gudlaugur Thorbergsson, A survey on isoparametric hypersurfaces and their generalizations,, Handbook of differential geometry, (2000), 963.   Google Scholar

show all references

References:
[1]

S. S. Antman, Nonuniqueness of equilibrium states for bars in tension,, J. Math. Anal. Appl., 44 (1973), 333.  doi: 10.1016/0022-247X(73)90063-2.  Google Scholar

[2]

Luis Caffarelli, Nicola Garofalo and Fausto Segala, A gradient bound for entire solutions of quasi-linear equations and its conseguences,, Comm. Pure Appl. Math., 47 (1994), 1457.  doi: 10.1002/cpa.3160471103.  Google Scholar

[3]

Diego Castellaneta, Stima puntuale del gradiente per soluzioni di equazioni ellittiche singolari o degeneri in domini propri con curvatura media nonnegativa,, avaliable online at {\tt http://www.math.utexas.edu/mp$\_$arc/}, (2009).   Google Scholar

[4]

Emmanuele DiBenedetto, "Degerate Parabolic Equation,", Springer-Verlag, (1991).   Google Scholar

[5]

James Eells, The surfaces of Delaunay,, Math. Intelligencer, 9 (1987), 53.  doi: 10.1007/BF03023575.  Google Scholar

[6]

Alberto Farina, Berardino Sciunzi and Enrico Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 741.   Google Scholar

[7]

Alberto Farina and Enrico Valdinoci, Geometry of quasiminimal phase transitions,, Calc. Var. Partial Differ. Equ., 33 (2008), 1.  doi: 10.1007/s00526-007-0146-1.  Google Scholar

[8]

Alberto Farina and Enrico Valdinoci, A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature,, Adv. Math., 225 (2010), 2808.  doi: 10.1016/j.aim.2010.05.008.  Google Scholar

[9]

Alberto Farina and Enrico Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems,, Arch. Ration. Mech. Anal., 195 (2010), 1025.  doi: 10.1007/s00205-009-0227-8.  Google Scholar

[10]

David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order,, volume 224 of, (1983).   Google Scholar

[11]

Lars Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis,, Reprint of the second (1990) edition. Classics in Mathematics. Springer-Verlag, (1990).   Google Scholar

[12]

Lars Hörmander, "The Analysis of Linear Partial Differential Operators. II. Differential Operators with Constant Coefficients,", Reprint of the 1983 original. Classics in Mathematics. Springer-Verlag, (1983).   Google Scholar

[13]

Bernd Kawohl, "Symmetrization-or how to Prove Symmetry of Solutions to a PDE,", Partial differential equations (Praha, (1998), 214.   Google Scholar

[14]

Olga A. Ladyzhenskaya and Nina N. Ural'tseva, "Linear and Quasilinear Elliptic Equations,", translated from the Russian by Scripta Technica, (1968).   Google Scholar

[15]

Gary M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations,, Nonlinear Anal., 12 (1988), 1203.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[16]

Rafael de la Llave and Enrico Valdinoci, Ground states and critical points for generalized Frankel-Kontorova models in $Z^d$,, Nonlinearity, 20 (2007), 2409.  doi: 10.1088/0951-7715/20/10/008.  Google Scholar

[17]

Luciano Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations,, Comm. Pure Appl. Math., 38 (1985), 679.  doi: 10.1002/cpa.3160380515.  Google Scholar

[18]

Lawrence E. Payne, Some remarks on maximum principles,, J. Analyse Math., 30 (1976), 421.  doi: 10.1007/BF02786729.  Google Scholar

[19]

Patrizia Pucci and James Serrin, "The Maximum Principle,", Progress in Nonlinear Differential Equations and their Applications, (2007).   Google Scholar

[20]

Renè P. Sperb, "Maximum Principles and Their Applications,", volume 157 of Mathematics in Science and Engineering. Academic Press Inc, (1981).   Google Scholar

[21]

Gudlaugur Thorbergsson, A survey on isoparametric hypersurfaces and their generalizations,, Handbook of differential geometry, (2000), 963.   Google Scholar

[1]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[2]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[3]

Jianguo Huang, Jun Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 145-170. doi: 10.3934/dcdsb.2007.7.145

[4]

Laura Baldelli, Roberta Filippucci. A priori estimates for elliptic problems via Liouville type theorems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020148

[5]

Xavier Cabré. Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 425-457. doi: 10.3934/dcds.2008.20.425

[6]

Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731

[7]

Alfonso Castro, Rosa Pardo. A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 783-790. doi: 10.3934/dcdsb.2017038

[8]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[9]

Gisella Croce. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 507-530. doi: 10.3934/dcdss.2012.5.507

[10]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[11]

Gary M. Lieberman. Schauder estimates for singular parabolic and elliptic equations of Keldysh type. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1525-1566. doi: 10.3934/dcdsb.2016010

[12]

Marina Ghisi, Massimo Gobbino. Hyperbolic--parabolic singular perturbation for mildly degenerate Kirchhoff equations: Global-in-time error estimates. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1313-1332. doi: 10.3934/cpaa.2009.8.1313

[13]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[14]

Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

[15]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[16]

Dian Palagachev, Lubomira Softova. A priori estimates and precise regularity for parabolic systems with discontinuous data. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 721-742. doi: 10.3934/dcds.2005.13.721

[17]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

[18]

Radjesvarane Alexandre, Jie Liao, Chunjin Lin. Some a priori estimates for the homogeneous Landau equation with soft potentials. Kinetic & Related Models, 2015, 8 (4) : 617-650. doi: 10.3934/krm.2015.8.617

[19]

Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539

[20]

Evgeny Galakhov. Some nonexistence results for quasilinear PDE's. Communications on Pure & Applied Analysis, 2007, 6 (1) : 141-161. doi: 10.3934/cpaa.2007.6.141

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (4)

[Back to Top]