• Previous Article
    Evaluating cyclicity of cubic systems with algorithms of computational algebra
  • CPAA Home
  • This Issue
  • Next Article
    A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature
September  2012, 11(5): 2005-2021. doi: 10.3934/cpaa.2012.11.2005

Double resonance for Dirichlet problems with unbounded indefinite potential and combined nonlinearities

1. 

Department of Mathematics, Missouri State University, Spring eld, MO 65804, United States

2. 

Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780

Received  May 2011 Revised  December 2011 Published  March 2012

We study a semilinear parametric Dirichlet equation with an indefinite and unbounded potential. The reaction is the sum of a sublinear (concave) term and of an asymptotically linear resonant term. The resonance is with respect to any nonprincipal nonnegative eigenvalue of the differential operator. Using variational methods based on the critical point theory and Morse theory (critical groups), we show that when the parameter $\lambda>0$ is small, the problem has at least three nontrivial smooth solutions.
Citation: Shouchuan Hu, Nikolaos S. Papageorgiou. Double resonance for Dirichlet problems with unbounded indefinite potential and combined nonlinearities. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2005-2021. doi: 10.3934/cpaa.2012.11.2005
References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, "Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equation with Inequality Constraints," Memoirs of AMS, 196, No. 915, 2008.

[2]

H. Berestycki and D. G. deFigueiredo, Double resonance is semilinear elliptic problems, Comm. Partial Diff. Equas., 6 (1981), 91-120. doi: 10.1080/03605308108820172.

[3]

N. P. Cac, On an elliptic boundary value problem at double resonance, J. Math. Anal. Appl., 132 (1988), 473-483. doi: 10.1016/0022-247X(88)90075-3.

[4]

K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems," Birkhauser, Boston, 1993.

[5]

F. Clarke, "Optimization and Nonsmooth Analysis," Wiley, New York, 1983.

[6]

Y. Deng, S. Peng and L. Wang, Existence of multiple solutions for a nonhomogeneous semilinear elliptic equatio involving critical exponent, Discrete Contin. Dynam. Systems, 32 (2012), 795-826.

[7]

D. G. deFigueiredo and J. P. Gossez, Strict monotonicity of eigenvalues and unique continuation, Comm. Partial Diff. Equas., 17 (1992), 339-346. doi: 10.1080/03605309208820844.

[8]

M. Filippakis, D. O'Regan and N. S. Papageorgiou, Positive solutions and bifurcation phenomena for nonlinear elliptic equations of Logistic type:The superdiffusive case, Comm. Pure Appl. Anal., 9 (2010), 1507-1527. doi: 10.3934/cpaa.2010.9.1507.

[9]

M. Filippakis and N. S. Papageorgiou, Multiplicity of solutions for doubly resonant Neumann problem, Bull. Belgian Math. Soc., 18 (2011), 135-156.

[10]

Z. Guo, Z. Liu, J. Wei and F. Zhou, Bifurcations of some elliptic problems with a singular nonlinearity via Morse index, Comm. Pure. Appl. Anal., 10 (2011), 507-525. doi: 10.3934/cpaa.2011.10.507.

[11]

N. Garofalo and F. H. Lin, Unique continuation for elliptic operators: A geometric variatoinal approach, Comm. Pure Appl. Math., 40 (1987), 347-366.

[12]

L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis," Chapman & Hall/CRC, Boca Raton, 2006.

[13]

J. Garcia Melian, J. Rossi and J. Sabina de Lis, A convex-concave problem with a parameter on the boundary condition, Discrete Contin. Dynam. Systems, 32 (2012), 1095-1124.

[14]

Q. Jiu and J. Su, Existence and multiplicity results for perturbations of the $p$-Laplacian, J. Math. Anal. Appl., 281 (2003), 587-601. doi: 10.1016/S0022-247X(03)00165-3.

[15]

Z. Liang and J. Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance, J. Math. Anal. Appl., 354 (2009), 147-158. doi: 10.1016/j.jmaa.2008.12.053.

[16]

M. L. Miotto, Multiple solutions for elliptic problems in $R^N$ with critical Spbolev exponent and weight function, Comm. Pure Appl. Anal., 9 (2010), 233-248. doi: 10.3934/cpaa.2010.9.233.

[17]

D. Motreanu, D. O'Regan and N. S. Papageorgiou, A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems, Comm. Pure Appl. Anal., 10 (2011), 1791-1816. doi: 10.3934/cpaa.2011.10.1791.

[18]

N. S. Papageorgiou and S. Th. Kyritsi, "Handbook of Applied Analysis," Springer, New York, 2009.

[19]

J-M. Rakotoson, Generalized eigenvalue problem for totally discontinuous operator, Discrete Contin. Dynam. Systems, 28 (2010), 343-373. doi: 10.3934/dcds.2010.28.343.

[20]

P. Pucci and J. Serrin, "The Maximum Principle," Birkhauser, Basel, 2007.

[21]

S. Robinson, Double resonance in semilinear elliptic boundary value problem over bounded and unbounded domain, Nonlin. Anal., 21 (1993), 407-424. doi: 10.1016/0362-546X(93)90125-C.

[22]

R. Showalter, "Hilbert Space Methods for Partial Differential Equations," Pitman, London, 1977.

[23]

M. Struwe, "Variational Methods," Springer, Berlin, 1990.

[24]

J. Su, Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues, Nonlinear Anal., 48 (2002), 881-895. doi: 10.1016/S0362-546X(00)00221-2.

[25]

W. Zou, Multiple solutions for elliptic equations with resonance, Nonlinear Anal., 48 (2002), 363-376. doi: 10.1016/S0362-546X(00)00190-5.

show all references

References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, "Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equation with Inequality Constraints," Memoirs of AMS, 196, No. 915, 2008.

[2]

H. Berestycki and D. G. deFigueiredo, Double resonance is semilinear elliptic problems, Comm. Partial Diff. Equas., 6 (1981), 91-120. doi: 10.1080/03605308108820172.

[3]

N. P. Cac, On an elliptic boundary value problem at double resonance, J. Math. Anal. Appl., 132 (1988), 473-483. doi: 10.1016/0022-247X(88)90075-3.

[4]

K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems," Birkhauser, Boston, 1993.

[5]

F. Clarke, "Optimization and Nonsmooth Analysis," Wiley, New York, 1983.

[6]

Y. Deng, S. Peng and L. Wang, Existence of multiple solutions for a nonhomogeneous semilinear elliptic equatio involving critical exponent, Discrete Contin. Dynam. Systems, 32 (2012), 795-826.

[7]

D. G. deFigueiredo and J. P. Gossez, Strict monotonicity of eigenvalues and unique continuation, Comm. Partial Diff. Equas., 17 (1992), 339-346. doi: 10.1080/03605309208820844.

[8]

M. Filippakis, D. O'Regan and N. S. Papageorgiou, Positive solutions and bifurcation phenomena for nonlinear elliptic equations of Logistic type:The superdiffusive case, Comm. Pure Appl. Anal., 9 (2010), 1507-1527. doi: 10.3934/cpaa.2010.9.1507.

[9]

M. Filippakis and N. S. Papageorgiou, Multiplicity of solutions for doubly resonant Neumann problem, Bull. Belgian Math. Soc., 18 (2011), 135-156.

[10]

Z. Guo, Z. Liu, J. Wei and F. Zhou, Bifurcations of some elliptic problems with a singular nonlinearity via Morse index, Comm. Pure. Appl. Anal., 10 (2011), 507-525. doi: 10.3934/cpaa.2011.10.507.

[11]

N. Garofalo and F. H. Lin, Unique continuation for elliptic operators: A geometric variatoinal approach, Comm. Pure Appl. Math., 40 (1987), 347-366.

[12]

L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis," Chapman & Hall/CRC, Boca Raton, 2006.

[13]

J. Garcia Melian, J. Rossi and J. Sabina de Lis, A convex-concave problem with a parameter on the boundary condition, Discrete Contin. Dynam. Systems, 32 (2012), 1095-1124.

[14]

Q. Jiu and J. Su, Existence and multiplicity results for perturbations of the $p$-Laplacian, J. Math. Anal. Appl., 281 (2003), 587-601. doi: 10.1016/S0022-247X(03)00165-3.

[15]

Z. Liang and J. Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance, J. Math. Anal. Appl., 354 (2009), 147-158. doi: 10.1016/j.jmaa.2008.12.053.

[16]

M. L. Miotto, Multiple solutions for elliptic problems in $R^N$ with critical Spbolev exponent and weight function, Comm. Pure Appl. Anal., 9 (2010), 233-248. doi: 10.3934/cpaa.2010.9.233.

[17]

D. Motreanu, D. O'Regan and N. S. Papageorgiou, A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems, Comm. Pure Appl. Anal., 10 (2011), 1791-1816. doi: 10.3934/cpaa.2011.10.1791.

[18]

N. S. Papageorgiou and S. Th. Kyritsi, "Handbook of Applied Analysis," Springer, New York, 2009.

[19]

J-M. Rakotoson, Generalized eigenvalue problem for totally discontinuous operator, Discrete Contin. Dynam. Systems, 28 (2010), 343-373. doi: 10.3934/dcds.2010.28.343.

[20]

P. Pucci and J. Serrin, "The Maximum Principle," Birkhauser, Basel, 2007.

[21]

S. Robinson, Double resonance in semilinear elliptic boundary value problem over bounded and unbounded domain, Nonlin. Anal., 21 (1993), 407-424. doi: 10.1016/0362-546X(93)90125-C.

[22]

R. Showalter, "Hilbert Space Methods for Partial Differential Equations," Pitman, London, 1977.

[23]

M. Struwe, "Variational Methods," Springer, Berlin, 1990.

[24]

J. Su, Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues, Nonlinear Anal., 48 (2002), 881-895. doi: 10.1016/S0362-546X(00)00221-2.

[25]

W. Zou, Multiple solutions for elliptic equations with resonance, Nonlinear Anal., 48 (2002), 363-376. doi: 10.1016/S0362-546X(00)00190-5.

[1]

Nikolaos S. Papageorgiou, Patrick Winkert. Double resonance for Robin problems with indefinite and unbounded potential. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 323-344. doi: 10.3934/dcdss.2018018

[2]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[3]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control and Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[4]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control and Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[5]

Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems and Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309

[6]

Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003

[7]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure and Applied Analysis, 2021, 20 (2) : 547-558. doi: 10.3934/cpaa.2020280

[8]

Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623

[9]

Taige Wang, Dihong Xu. A quantitative strong unique continuation property of a diffusive SIS model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1599-1614. doi: 10.3934/dcdss.2022024

[10]

Leszek Gasiński, Nikolaos S. Papageorgiou. Multiplicity of solutions for Neumann problems with an indefinite and unbounded potential. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1985-1999. doi: 10.3934/cpaa.2013.12.1985

[11]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

[12]

Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107

[13]

Peng Gao. Unique continuation property for stochastic nonclassical diffusion equations and stochastic linearized Benjamin-Bona-Mahony equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2493-2510. doi: 10.3934/dcdsb.2018262

[14]

Peng Gao. Carleman estimates and Unique Continuation Property for 1-D viscous Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 169-188. doi: 10.3934/dcds.2017007

[15]

Giovanni Covi, Keijo Mönkkönen, Jesse Railo. Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. Inverse Problems and Imaging, 2021, 15 (4) : 641-681. doi: 10.3934/ipi.2021009

[16]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[17]

Claudianor O. Alves, Giovany M. Figueiredo, Marcelo F. Furtado. Multiplicity of solutions for elliptic systems via local Mountain Pass method. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1745-1758. doi: 10.3934/cpaa.2009.8.1745

[18]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[19]

Muhammad Hamid, Wei Wang. A symmetric property in the enhanced common index jump theorem with applications to the closed geodesic problem. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1933-1948. doi: 10.3934/dcds.2021178

[20]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]