• Previous Article
    Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities
  • CPAA Home
  • This Issue
  • Next Article
    Double resonance for Dirichlet problems with unbounded indefinite potential and combined nonlinearities
September  2012, 11(5): 2023-2035. doi: 10.3934/cpaa.2012.11.2023

Evaluating cyclicity of cubic systems with algorithms of computational algebra

1. 

Lehrstuhl D für Mathematik, RWTH Aachen University, Templergraben 64, D-52062 Aachen, Germany

2. 

Technische University of Kaiserslautern Fachbereich Mathematik Erwin-Schrödinger Str. 48,D-67653 Kaiserslautern, Germany

3. 

CAMTP - Center for Applied Mathematics and Theoretical Physics,University of Maribor, Krekova 2 , SI-2000 Maribor, Slovenia

Received  June 2011 Revised  December 2011 Published  March 2012

We describe an algorithmic approach to studying limit cycle bifurcations in a neighborhood of an elementary center or focus of a polynomial system. Using it we obtain an upper bound for cyclicity of a family of cubic systems. Then using a theorem by Christopher [3] we study bifurcation of limit cycles from each component of the center variety. We obtain also the sharp bound for the cyclicity of a generic time-reversible cubic system.
Citation: Viktor Levandovskyy, Gerhard Pfister, Valery G. Romanovski. Evaluating cyclicity of cubic systems with algorithms of computational algebra. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2023-2035. doi: 10.3934/cpaa.2012.11.2023
References:
[1]

N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type,, Mat. Sbornik N. S., 30 (1952), 181.   Google Scholar

[2]

B. Buchberger, An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal,, J. Symbolic Comput., 41 (2006), 475.  doi: 10.1016/j.jsc.2005.09.007.  Google Scholar

[3]

C. Christopher, Estimating limit cycles bifurcations,, in, (2005), 23.  doi: 10.1007/3-7643-7429-2_2.  Google Scholar

[4]

C. J. Christopher and C. Rousseau, Nondegenerate linearizable centres of complex planar quadratic and symmetric cubic systems in $\mathbbC^2$,, Publ. Mat., 45 (2001), 95.  doi: 10.5565/PUBLMAT_45101_04.  Google Scholar

[5]

D. Cox, J. Little and D. O'Shea, "Ideals, Varieties and Algorithms,", Springer-Verlag, (1992).  doi: 10.1216/rmjm/1181071923.  Google Scholar

[6]

A. Cima, A. Gasull, V. Mañosa and F. Mañosas, Algebraic properties of the Liapunov and periodic constants,, Rocky Mountain J. Math., 27 (1997), 471.  doi: 10.1216/rmjm/1181071923.  Google Scholar

[7]

W. Decker, S. Laplagne, G. Pfister and H. A. Schönemann, Singular 3-1 library for computing the primary decomposition and radical of ideals,, primdec.lib, (2010).   Google Scholar

[8]

J.-P. Françoise and Y. Yomdin, Bernstein inequalities and applications to analytic geometry and differential equations,, J. Functional Analysis, 146 (1997), 185.  doi: 10.1006/jfan.1996.3029.  Google Scholar

[9]

P. Gianni, B. Trager and G. Zacharias, Gröbner bases and primary decomposition of polynomials,, J. Symbolic Comput., 6 (1988), 146.  doi: 10.1016/S0747-7171(88)80040-3.  Google Scholar

[10]

J. Giné, On some open problems in planar differential systems and Hilbert's 16th problem,, Chaos Solitons Fractals, 31 (2007), 1118.  doi: 10.1016/j.chaos.2005.10.057.  Google Scholar

[11]

G.-M. Greuel and G. Pfister, "A Singular Introduction to Commutative Algebra,", Springer-Verlag, (2002).   Google Scholar

[12]

W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 3-1-2. A computer algebra system for polynomial computations,, Centre for Computer Algebra, (2010).   Google Scholar

[13]

M. Han, H. Zang and T. Zhang, A new proof to Bautin's theorem,, Chaos Solitons Fractals, 31 (2007), 218.  doi: 10.1016/j.chaos.2005.09.051.  Google Scholar

[14]

Yu. Ilyashenko and S. Yakovenko, "Lectures on Analytic Differential Equations,", Graduate Studies in Mathematics, 86 (2008).   Google Scholar

[15]

A. Jarrah, R. Laubenbacher and V. G. Romanovski, The Sibirsky component of the center variety of polynomial differential systems,, J. Symb. Comput., 35 (2003), 577.  doi: 10.1016/S0747-7171(03)00016-6.  Google Scholar

[16]

V. Levandovskyy, A. Logar and V. G. Romanovski, The cyclicity of a cubic system,, Open Syst. Inf. Dyn., 16 (2009), 429.  doi: 10.1142/S1230161209000323.  Google Scholar

[17]

V. Levandovskyy, V. G. Romanovski and D. S. Shafer, The cyclicity of a cubic system with nonradical Bautin ideal,, J. Differential Equations, 246 (2009), 1274.  doi: 10.1016/j.jde.2008.07.026.  Google Scholar

[18]

Y.-R. Liu and J.-B. Li, Theory of values of singular point in complex autonomous differential systems,, Sci. China Ser. A, 33 (1989), 10.   Google Scholar

[19]

J. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47.  doi: 10.1142/S0218127403006352.  Google Scholar

[20]

N. G. Lloyd, J. M. Pearson and V. G. Romanovsky, Computing integrability conditions for a cubic differential system,, Comput. Math. Appl., 32 (1996), 99.  doi: 10.1016/S0898-1221(96)00188-5.  Google Scholar

[21]

V. G. Romanovski, Time-reversibility in 2-Dim systems,, Open Syst. Inf. Dyn., 15 (2008), 359.  doi: 10.1142/S1230161208000249.  Google Scholar

[22]

V. G. Romanovski and D. S. Shafer, Time-reversibility in two-dimensional polynomial systems,, in, (2005), 67.  doi: 10.1007/3-7643-7429-2_5.  Google Scholar

[23]

V. G. Romanovski and D. S. Shafer, "The Center and Cyclicity Problems: A Computational Algebra Approach,", Birkh\, (2009).   Google Scholar

[24]

R. Roussarie, "Bifurcations of Planar Vector Fields and Hilbert's Sixteenth Problem,", Progress in Mathematics, 164 (1998).   Google Scholar

[25]

K. S. Sibirskii, On the number of limit cycles in the neighborhood of a singular point,, Differ. Uravn. (Russian), 1 (1965), 53.   Google Scholar

[26]

S. Yakovenko, A geometric proof of the Bautin theorem,, Concerning the Hilbert Sixteenth Problem. Advances in Mathematical Sciences, 165 (1995), 203.   Google Scholar

[27]

H. Żołądek, Quadratic systems with center and their perturbations,, J. Differential Equations, 109 (1994), 223.  doi: 10.1006/jdeq.1994.1049.  Google Scholar

[28]

H. Żołądek, On a certain generalization of Bautin's theorem,, Nonlinearity, 7 (1994), 273.  doi: 10.1088/0951-7715/7/1/013.  Google Scholar

show all references

References:
[1]

N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type,, Mat. Sbornik N. S., 30 (1952), 181.   Google Scholar

[2]

B. Buchberger, An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal,, J. Symbolic Comput., 41 (2006), 475.  doi: 10.1016/j.jsc.2005.09.007.  Google Scholar

[3]

C. Christopher, Estimating limit cycles bifurcations,, in, (2005), 23.  doi: 10.1007/3-7643-7429-2_2.  Google Scholar

[4]

C. J. Christopher and C. Rousseau, Nondegenerate linearizable centres of complex planar quadratic and symmetric cubic systems in $\mathbbC^2$,, Publ. Mat., 45 (2001), 95.  doi: 10.5565/PUBLMAT_45101_04.  Google Scholar

[5]

D. Cox, J. Little and D. O'Shea, "Ideals, Varieties and Algorithms,", Springer-Verlag, (1992).  doi: 10.1216/rmjm/1181071923.  Google Scholar

[6]

A. Cima, A. Gasull, V. Mañosa and F. Mañosas, Algebraic properties of the Liapunov and periodic constants,, Rocky Mountain J. Math., 27 (1997), 471.  doi: 10.1216/rmjm/1181071923.  Google Scholar

[7]

W. Decker, S. Laplagne, G. Pfister and H. A. Schönemann, Singular 3-1 library for computing the primary decomposition and radical of ideals,, primdec.lib, (2010).   Google Scholar

[8]

J.-P. Françoise and Y. Yomdin, Bernstein inequalities and applications to analytic geometry and differential equations,, J. Functional Analysis, 146 (1997), 185.  doi: 10.1006/jfan.1996.3029.  Google Scholar

[9]

P. Gianni, B. Trager and G. Zacharias, Gröbner bases and primary decomposition of polynomials,, J. Symbolic Comput., 6 (1988), 146.  doi: 10.1016/S0747-7171(88)80040-3.  Google Scholar

[10]

J. Giné, On some open problems in planar differential systems and Hilbert's 16th problem,, Chaos Solitons Fractals, 31 (2007), 1118.  doi: 10.1016/j.chaos.2005.10.057.  Google Scholar

[11]

G.-M. Greuel and G. Pfister, "A Singular Introduction to Commutative Algebra,", Springer-Verlag, (2002).   Google Scholar

[12]

W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 3-1-2. A computer algebra system for polynomial computations,, Centre for Computer Algebra, (2010).   Google Scholar

[13]

M. Han, H. Zang and T. Zhang, A new proof to Bautin's theorem,, Chaos Solitons Fractals, 31 (2007), 218.  doi: 10.1016/j.chaos.2005.09.051.  Google Scholar

[14]

Yu. Ilyashenko and S. Yakovenko, "Lectures on Analytic Differential Equations,", Graduate Studies in Mathematics, 86 (2008).   Google Scholar

[15]

A. Jarrah, R. Laubenbacher and V. G. Romanovski, The Sibirsky component of the center variety of polynomial differential systems,, J. Symb. Comput., 35 (2003), 577.  doi: 10.1016/S0747-7171(03)00016-6.  Google Scholar

[16]

V. Levandovskyy, A. Logar and V. G. Romanovski, The cyclicity of a cubic system,, Open Syst. Inf. Dyn., 16 (2009), 429.  doi: 10.1142/S1230161209000323.  Google Scholar

[17]

V. Levandovskyy, V. G. Romanovski and D. S. Shafer, The cyclicity of a cubic system with nonradical Bautin ideal,, J. Differential Equations, 246 (2009), 1274.  doi: 10.1016/j.jde.2008.07.026.  Google Scholar

[18]

Y.-R. Liu and J.-B. Li, Theory of values of singular point in complex autonomous differential systems,, Sci. China Ser. A, 33 (1989), 10.   Google Scholar

[19]

J. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47.  doi: 10.1142/S0218127403006352.  Google Scholar

[20]

N. G. Lloyd, J. M. Pearson and V. G. Romanovsky, Computing integrability conditions for a cubic differential system,, Comput. Math. Appl., 32 (1996), 99.  doi: 10.1016/S0898-1221(96)00188-5.  Google Scholar

[21]

V. G. Romanovski, Time-reversibility in 2-Dim systems,, Open Syst. Inf. Dyn., 15 (2008), 359.  doi: 10.1142/S1230161208000249.  Google Scholar

[22]

V. G. Romanovski and D. S. Shafer, Time-reversibility in two-dimensional polynomial systems,, in, (2005), 67.  doi: 10.1007/3-7643-7429-2_5.  Google Scholar

[23]

V. G. Romanovski and D. S. Shafer, "The Center and Cyclicity Problems: A Computational Algebra Approach,", Birkh\, (2009).   Google Scholar

[24]

R. Roussarie, "Bifurcations of Planar Vector Fields and Hilbert's Sixteenth Problem,", Progress in Mathematics, 164 (1998).   Google Scholar

[25]

K. S. Sibirskii, On the number of limit cycles in the neighborhood of a singular point,, Differ. Uravn. (Russian), 1 (1965), 53.   Google Scholar

[26]

S. Yakovenko, A geometric proof of the Bautin theorem,, Concerning the Hilbert Sixteenth Problem. Advances in Mathematical Sciences, 165 (1995), 203.   Google Scholar

[27]

H. Żołądek, Quadratic systems with center and their perturbations,, J. Differential Equations, 109 (1994), 223.  doi: 10.1006/jdeq.1994.1049.  Google Scholar

[28]

H. Żołądek, On a certain generalization of Bautin's theorem,, Nonlinearity, 7 (1994), 273.  doi: 10.1088/0951-7715/7/1/013.  Google Scholar

[1]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[2]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[3]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[4]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[5]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[6]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[7]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[10]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[11]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[12]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[13]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[16]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[17]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (7)

[Back to Top]