September  2012, 11(5): 2037-2054. doi: 10.3934/cpaa.2012.11.2037

Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities

1. 

Department of Mathematics, Koç University, Istanbul, Turkey

2. 

Department of Mathematics, University of Surrey, Guildford, GU2 7XH

Received  May 2011 Revised  December 2011 Published  March 2012

We prove the existence of regular dissipative solutions and global attractors for the 3D Brinkmann-Forchheimer equations with a nonlinearity of arbitrary polynomial growth rate. In order to obtain this result, we prove the maximal regularity estimate for the corresponding semi-linear stationary Stokes problem using some modification of the nonlinear localization technique. The applications of our results to the Brinkmann-Forchheimer equation with the Navier-Stokes inertial term are also considered.
Citation: Varga K. Kalantarov, Sergey Zelik. Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2037-2054. doi: 10.3934/cpaa.2012.11.2037
References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", North-Holland, (1992).   Google Scholar

[2]

A. O. Çelebi, V. K. Kalantarov and D. Ugurlu, Continuous dependence for the convective Brinkman-Forchheimer equations,, Appl. Anal., 84 (2005), 877.   Google Scholar

[3]

A. O. Çelebi, V. K. Kalantarov and D. Ugurlu, On continuous dependence on coefficients of the Brinkman-Forchheimer equations,, Appl. Math. Lett., 19 (2006), 801.   Google Scholar

[4]

P. Constantin and C. Foias, "Navier-Stokes Equations,", Chicago Lectures in Mathematics. University of Chicago Press, (1988).   Google Scholar

[5]

H. Gajewski, K. Gröger and K. Zacharias, "Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen,", Akademie-Verlag, (1974).   Google Scholar

[6]

R. G. Gordeev, The existence of a periodic solution in a certain problem of tidal dynamics,, In, (1973), 3.   Google Scholar

[7]

J. Hale, "Asymptotic Behavior of Dissipative Systems,", AMS Mathematical Surveys and Monographs no. 25, (1988).   Google Scholar

[8]

I. Kuzin and S. Pohozaev, "Entire Solutions of Semilinear Elliptic Equations,", Progress in Nonlinear Differential Equations and their Applications, (1997).   Google Scholar

[9]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly damped wave equation,, JDE, 247 (2009), 1120.  doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[10]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", Gordon and Breach Science Publishers, (1969).   Google Scholar

[11]

O. A. Ladyzhenskaya, "Attractors for Semigroups and Evolution Equations,", Accademia Nazionae dei Lincei series, (1991).   Google Scholar

[12]

Y. Liu and C. Lin, Structural stability for Brinkman-Forchheimer equations,, Electron. J. Differential Equations, 2 (2007), 1.   Google Scholar

[13]

A. L. Likhtarnikov, Existence and stability of bounded and periodic solutions in a nonlinear problem of tidal dynamics,, In, (1979), 83.   Google Scholar

[14]

P. Lindqvist, On the equation $div(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2}u=0$,, Proc. Amer. Math. Soc., 109 (1990), 157.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

[15]

M. Marion, Attractors for reaction-diffusion equations: existence and estimate of their dimension,, Appl. Anal., 25 (1987), 101.  doi: 10.1080/00036818708839678.  Google Scholar

[16]

D. Nield and A. Bejan, "Convection in Porous Media,", Springer, (2006).   Google Scholar

[17]

Y. Ouyang and L. Yan, A note on the existence of a global attractor for the BrinkmanForchheimer equations,, Nonlinear Analysis, 70 (2009), 2054.   Google Scholar

[18]

L. E. Payne and B. Straughan, Convergence and continuous dependence for the Brinkman-Forchheimer equations,, Studies in Applied Mathematics, 10 (1999), 419.   Google Scholar

[19]

M. Röckner and X. Zhang, Tamed 3D Navier-Stokes equation: existence, uniqueness and regularity,, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12 (2009), 525.   Google Scholar

[20]

A. Shenoy, Non-Newtonian fluid heat transfer in porous media,, Adv. Heat Transfer, 24 (1994), 101.  doi: 10.1016/S0065-2717(08)70233-8.  Google Scholar

[21]

B. Straughan, "Stability and Wave Motion in Porous Media,", Applied Mathematical Sciences, (2008).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[22]

R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics,", Springer Verlag, (1988).   Google Scholar

[23]

D. Ugurlu, On the existence of a global attractor for the Brinkman-Forchheimer equations,, Nonlinear Analysis, 68 (2008), 1986.  doi: 10.1016/j.na.2007.01.025.  Google Scholar

[24]

B. Wang and S. Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation,, Math. Meth. Appl. Sci., 31 (2008), 1479.   Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", North-Holland, (1992).   Google Scholar

[2]

A. O. Çelebi, V. K. Kalantarov and D. Ugurlu, Continuous dependence for the convective Brinkman-Forchheimer equations,, Appl. Anal., 84 (2005), 877.   Google Scholar

[3]

A. O. Çelebi, V. K. Kalantarov and D. Ugurlu, On continuous dependence on coefficients of the Brinkman-Forchheimer equations,, Appl. Math. Lett., 19 (2006), 801.   Google Scholar

[4]

P. Constantin and C. Foias, "Navier-Stokes Equations,", Chicago Lectures in Mathematics. University of Chicago Press, (1988).   Google Scholar

[5]

H. Gajewski, K. Gröger and K. Zacharias, "Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen,", Akademie-Verlag, (1974).   Google Scholar

[6]

R. G. Gordeev, The existence of a periodic solution in a certain problem of tidal dynamics,, In, (1973), 3.   Google Scholar

[7]

J. Hale, "Asymptotic Behavior of Dissipative Systems,", AMS Mathematical Surveys and Monographs no. 25, (1988).   Google Scholar

[8]

I. Kuzin and S. Pohozaev, "Entire Solutions of Semilinear Elliptic Equations,", Progress in Nonlinear Differential Equations and their Applications, (1997).   Google Scholar

[9]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly damped wave equation,, JDE, 247 (2009), 1120.  doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[10]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", Gordon and Breach Science Publishers, (1969).   Google Scholar

[11]

O. A. Ladyzhenskaya, "Attractors for Semigroups and Evolution Equations,", Accademia Nazionae dei Lincei series, (1991).   Google Scholar

[12]

Y. Liu and C. Lin, Structural stability for Brinkman-Forchheimer equations,, Electron. J. Differential Equations, 2 (2007), 1.   Google Scholar

[13]

A. L. Likhtarnikov, Existence and stability of bounded and periodic solutions in a nonlinear problem of tidal dynamics,, In, (1979), 83.   Google Scholar

[14]

P. Lindqvist, On the equation $div(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2}u=0$,, Proc. Amer. Math. Soc., 109 (1990), 157.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

[15]

M. Marion, Attractors for reaction-diffusion equations: existence and estimate of their dimension,, Appl. Anal., 25 (1987), 101.  doi: 10.1080/00036818708839678.  Google Scholar

[16]

D. Nield and A. Bejan, "Convection in Porous Media,", Springer, (2006).   Google Scholar

[17]

Y. Ouyang and L. Yan, A note on the existence of a global attractor for the BrinkmanForchheimer equations,, Nonlinear Analysis, 70 (2009), 2054.   Google Scholar

[18]

L. E. Payne and B. Straughan, Convergence and continuous dependence for the Brinkman-Forchheimer equations,, Studies in Applied Mathematics, 10 (1999), 419.   Google Scholar

[19]

M. Röckner and X. Zhang, Tamed 3D Navier-Stokes equation: existence, uniqueness and regularity,, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12 (2009), 525.   Google Scholar

[20]

A. Shenoy, Non-Newtonian fluid heat transfer in porous media,, Adv. Heat Transfer, 24 (1994), 101.  doi: 10.1016/S0065-2717(08)70233-8.  Google Scholar

[21]

B. Straughan, "Stability and Wave Motion in Porous Media,", Applied Mathematical Sciences, (2008).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[22]

R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics,", Springer Verlag, (1988).   Google Scholar

[23]

D. Ugurlu, On the existence of a global attractor for the Brinkman-Forchheimer equations,, Nonlinear Analysis, 68 (2008), 1986.  doi: 10.1016/j.na.2007.01.025.  Google Scholar

[24]

B. Wang and S. Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation,, Math. Meth. Appl. Sci., 31 (2008), 1479.   Google Scholar

[1]

Yuncheng You, Caidi Zhao, Shengfan Zhou. The existence of uniform attractors for 3D Brinkman-Forchheimer equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3787-3800. doi: 10.3934/dcds.2012.32.3787

[2]

Jeremy LeCrone, Gieri Simonett. On quasilinear parabolic equations and continuous maximal regularity. Evolution Equations & Control Theory, 2020, 9 (1) : 61-86. doi: 10.3934/eect.2020017

[3]

Carlos Lizama, Marina Murillo-Arcila. Discrete maximal regularity for volterra equations and nonlocal time-stepping schemes. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 509-528. doi: 10.3934/dcds.2020020

[4]

Jeremy LeCrone, Gieri Simonett. Continuous maximal regularity and analytic semigroups. Conference Publications, 2011, 2011 (Special) : 963-970. doi: 10.3934/proc.2011.2011.963

[5]

Pascal Auscher, Sylvie Monniaux, Pierre Portal. The maximal regularity operator on tent spaces. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2213-2219. doi: 10.3934/cpaa.2012.11.2213

[6]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Hiroki Tanabe, Atsushi Yagi. Necessary and sufficient conditions for maximal regularity in the study of elliptic differential equations in Hölder spaces. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 973-987. doi: 10.3934/dcds.2008.22.973

[7]

Tôn Việt Tạ. Non-autonomous stochastic evolution equations in Banach spaces of martingale type 2: Strict solutions and maximal regularity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4507-4542. doi: 10.3934/dcds.2017193

[8]

Peter Weidemaier. Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm. Electronic Research Announcements, 2002, 8: 47-51.

[9]

Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021

[10]

Geng Chen, Yannan Shen. Existence and regularity of solutions in nonlinear wave equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3327-3342. doi: 10.3934/dcds.2015.35.3327

[11]

Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184

[12]

Yoshikazu Giga, Jürgen Saal. $L^1$ maximal regularity for the laplacian and applications. Conference Publications, 2011, 2011 (Special) : 495-504. doi: 10.3934/proc.2011.2011.495

[13]

Yuanzhen Shao. Continuous maximal regularity on singular manifolds and its applications. Evolution Equations & Control Theory, 2016, 5 (2) : 303-335. doi: 10.3934/eect.2016006

[14]

Monica Conti, Vittorino Pata. On the regularity of global attractors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1209-1217. doi: 10.3934/dcds.2009.25.1209

[15]

Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205

[16]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1603-1621. doi: 10.3934/cpaa.2015.14.1603

[17]

Yangrong Li, Jinyan Yin. Existence, regularity and approximation of global attractors for weakly dissipative p-Laplace equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1939-1957. doi: 10.3934/dcdss.2016079

[18]

Xavier Cabré. Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 331-359. doi: 10.3934/dcds.2002.8.331

[19]

Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure & Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183

[20]

Yannick Privat, Emmanuel Trélat, Enrique Zuazua. Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6133-6153. doi: 10.3934/dcds.2015.35.6133

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]