Citation: |
[1] |
A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," North-Holland, Amsterdam, 1992. |
[2] |
A. O. Çelebi, V. K. Kalantarov and D. Ugurlu, Continuous dependence for the convective Brinkman-Forchheimer equations, Appl. Anal., 84 (2005), 877-888. |
[3] |
A. O. Çelebi, V. K. Kalantarov and D. Ugurlu, On continuous dependence on coefficients of the Brinkman-Forchheimer equations, Appl. Math. Lett., 19 (2006), 801-807. |
[4] |
P. Constantin and C. Foias, "Navier-Stokes Equations," Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1988. |
[5] |
H. Gajewski, K. Gröger and K. Zacharias, "Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen," Akademie-Verlag, Berlin, 1974. |
[6] |
R. G. Gordeev, The existence of a periodic solution in a certain problem of tidal dynamics, In "Probles of Mathematical Analysis, No. 4: Integral and Differential Operators. Differential Equations," pp. 3-9, 142-143, Leningrad. Univ., Leningrad, 1973. |
[7] |
J. Hale, "Asymptotic Behavior of Dissipative Systems," AMS Mathematical Surveys and Monographs no. 25, Providence, RI, 1988. |
[8] |
I. Kuzin and S. Pohozaev, "Entire Solutions of Semilinear Elliptic Equations," Progress in Nonlinear Differential Equations and their Applications, 33. Birkhöuser Verlag, Basel, 1997. |
[9] |
V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly damped wave equation, JDE, 247 (2009), 1120-155.doi: 10.1016/j.jde.2009.04.010. |
[10] |
O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow," Gordon and Breach Science Publishers, New York, 1969. |
[11] |
O. A. Ladyzhenskaya, "Attractors for Semigroups and Evolution Equations," Accademia Nazionae dei Lincei series, Cambridge University press, Cambridge, 1991. |
[12] |
Y. Liu and C. Lin, Structural stability for Brinkman-Forchheimer equations, Electron. J. Differential Equations, 2 (2007), 1-8. |
[13] |
A. L. Likhtarnikov, Existence and stability of bounded and periodic solutions in a nonlinear problem of tidal dynamics, In "The Direct Method in the Theory of Stability and its Applications" (Irkutsk, 1979), pp. 83-91, 276, "Nauka" Sibirsk. Otdel., Novosibirsk, 1981. |
[14] |
P. Lindqvist, On the equation $div(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2}u=0$, Proc. Amer. Math. Soc., 109 (1990), 157-164.doi: 10.1090/S0002-9939-1990-1007505-7. |
[15] |
M. Marion, Attractors for reaction-diffusion equations: existence and estimate of their dimension, Appl. Anal., 25 (1987), 101-147.doi: 10.1080/00036818708839678. |
[16] |
D. Nield and A. Bejan, "Convection in Porous Media," Springer, 2006. |
[17] |
Y. Ouyang and L. Yan, A note on the existence of a global attractor for the BrinkmanForchheimer equations, Nonlinear Analysis, 70 (2009), 2054-2059. |
[18] |
L. E. Payne and B. Straughan, Convergence and continuous dependence for the Brinkman-Forchheimer equations, Studies in Applied Mathematics, 10 (1999), 419-439. |
[19] |
M. Röckner and X. Zhang, Tamed 3D Navier-Stokes equation: existence, uniqueness and regularity, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12 (2009), 525-549. |
[20] |
A. Shenoy, Non-Newtonian fluid heat transfer in porous media, Adv. Heat Transfer, 24 (1994), 101-190.doi: 10.1016/S0065-2717(08)70233-8. |
[21] |
B. Straughan, "Stability and Wave Motion in Porous Media," Applied Mathematical Sciences, Springer, 2008.doi: 10.1007/978-1-4684-0313-8. |
[22] |
R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics," Springer Verlag, 1988. |
[23] |
D. Ugurlu, On the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Analysis, 68 (2008), 1986-1992.doi: 10.1016/j.na.2007.01.025. |
[24] |
B. Wang and S. Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation, Math. Meth. Appl. Sci., 31 (2008), 1479-1495. |