September  2012, 11(5): 2055-2078. doi: 10.3934/cpaa.2012.11.2055

On singular Navier-Stokes equations and irreversible phase transitions

1. 

Departamento de Matemática, Instituto de Matem, Brazil

2. 

Departamento de Matem, Brazil

3. 

Departamento de Matemática, IMECC - UNICAMP, Rua Sergio Buarque de Holanda, 651, 13083-859 Campinas, SP

Received  April 2010 Revised  December 2011 Published  March 2012

We analyze a singular system of partial differential equations corresponding to a model for the evolution of an irreversible solidification of certain pure materials by taking into account the effects of fluid flow in the molten regions. The model consists of a system of highly non-linear free-boundary parabolic equations and includes: a heat equation, a doubly nonlinear inclusion for the phase change and Navier-Stokes equations singularly perturbed by a Carman-Kozeny type term to take care of the flow in the mushy region and a Boussinesq term for the buoyancy forces due to thermal differences. Our approach to show existence of generalized solutions of this system involves time-discretization, a suitable regularization procedure and fixed point arguments.
Citation: José Luiz Boldrini, Luís H. de Miranda, Gabriela Planas. On singular Navier-Stokes equations and irreversible phase transitions. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2055-2078. doi: 10.3934/cpaa.2012.11.2055
References:
[1]

R. A. Adams and J. J. F. Fournier, "Sobolev Spaces,", 2$^{nd}$ edition, (2003).   Google Scholar

[2]

M. Aso, M. Frémond and N. Kenmochi, Parabolic systems with the unknown dependent constraints arising in phase transitions,, Inter. Ser. Num. Math. 154, Birkhäuser, Basel, (2007), 45-54., 154 (2007), 45.  doi: 10.1007/978-3-7643-7719-9_5.  Google Scholar

[3]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,", Noordhoff, (1976).   Google Scholar

[4]

J. L. Boldrini and G. Planas, A tridimensional phase-field model with convection for phase change of an alloy,, Discrete Continuous Dynam. Systems - A, 13 (2005), 429.  doi: 10.3934/dcds.2005.13.429.  Google Scholar

[5]

J. L. Boldrini and G. Planas, Some thoughts on mathematical modeling of solidification and melting,, Bolet\'in de la Sociedad Espa\ nola de Matem\'atica Aplicada, 41 (2007), 77.   Google Scholar

[6]

E. Bonetti, Global solution to a nonlinear phase transition model with dissipation,, Adv. Math. Sci. Appl., 12 (2002), 355.   Google Scholar

[7]

G. Bonfanti, M. Frémond and F. Luterotti, Global solution to a nonlinear system for irreversible phase changes,, Adv. Math. Sci. Appl., 10 (2000), 1.   Google Scholar

[8]

H. Brezis, "Opératours Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,", North-Holland Math. Studies, (1973).   Google Scholar

[9]

P. Colli, F. Luterotti, G. Schimperna and U. Stefanelli, Global existence for a class of generalized systems for irreversible phase changes,, NoDEA, 9 (2002), 255.  doi: 10.1007/s00030-002-8127-8.  Google Scholar

[10]

K-H. Hoffmann and L. Jiang, Optimal control of a phase field model for solidification,, Numer. Funct. Anal. and Optim., 13 (1992), 11.  doi: 10.1080/01630569208816458.  Google Scholar

[11]

P. Laurençot, G. Schimperma and U. Stefanelli, Global existence of a strong solution to the one-dimensional full model for irreversible phase transitions,, J. Math. Anal. Appl., 271 (2002), 426.  doi: 10.1016/S0022-247X(02)00127-0.  Google Scholar

[12]

F. Luterotti, G. Schimperma and U. Stefanelli, Global solution to a phase field model with irreversible and constrained phase evolution,, Quart. Appl. Math., 60 (2002), 301.   Google Scholar

[13]

G. Planas and J. L. Boldrini, A bidimensional phase-field model with convection for change phase of an alloy,, J. Math. Anal. Appl., 303 (2005), 669.  doi: 10.1016/j.jmaa.2004.08.068.  Google Scholar

[14]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, "Sobolev Spaces,", 2$^{nd}$ edition, (2003).   Google Scholar

[2]

M. Aso, M. Frémond and N. Kenmochi, Parabolic systems with the unknown dependent constraints arising in phase transitions,, Inter. Ser. Num. Math. 154, Birkhäuser, Basel, (2007), 45-54., 154 (2007), 45.  doi: 10.1007/978-3-7643-7719-9_5.  Google Scholar

[3]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,", Noordhoff, (1976).   Google Scholar

[4]

J. L. Boldrini and G. Planas, A tridimensional phase-field model with convection for phase change of an alloy,, Discrete Continuous Dynam. Systems - A, 13 (2005), 429.  doi: 10.3934/dcds.2005.13.429.  Google Scholar

[5]

J. L. Boldrini and G. Planas, Some thoughts on mathematical modeling of solidification and melting,, Bolet\'in de la Sociedad Espa\ nola de Matem\'atica Aplicada, 41 (2007), 77.   Google Scholar

[6]

E. Bonetti, Global solution to a nonlinear phase transition model with dissipation,, Adv. Math. Sci. Appl., 12 (2002), 355.   Google Scholar

[7]

G. Bonfanti, M. Frémond and F. Luterotti, Global solution to a nonlinear system for irreversible phase changes,, Adv. Math. Sci. Appl., 10 (2000), 1.   Google Scholar

[8]

H. Brezis, "Opératours Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,", North-Holland Math. Studies, (1973).   Google Scholar

[9]

P. Colli, F. Luterotti, G. Schimperna and U. Stefanelli, Global existence for a class of generalized systems for irreversible phase changes,, NoDEA, 9 (2002), 255.  doi: 10.1007/s00030-002-8127-8.  Google Scholar

[10]

K-H. Hoffmann and L. Jiang, Optimal control of a phase field model for solidification,, Numer. Funct. Anal. and Optim., 13 (1992), 11.  doi: 10.1080/01630569208816458.  Google Scholar

[11]

P. Laurençot, G. Schimperma and U. Stefanelli, Global existence of a strong solution to the one-dimensional full model for irreversible phase transitions,, J. Math. Anal. Appl., 271 (2002), 426.  doi: 10.1016/S0022-247X(02)00127-0.  Google Scholar

[12]

F. Luterotti, G. Schimperma and U. Stefanelli, Global solution to a phase field model with irreversible and constrained phase evolution,, Quart. Appl. Math., 60 (2002), 301.   Google Scholar

[13]

G. Planas and J. L. Boldrini, A bidimensional phase-field model with convection for change phase of an alloy,, J. Math. Anal. Appl., 303 (2005), 669.  doi: 10.1016/j.jmaa.2004.08.068.  Google Scholar

[14]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[4]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[5]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[6]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[7]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[8]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[9]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[10]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[11]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[12]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[13]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[14]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[15]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[18]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[19]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[20]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (3)

[Back to Top]