November  2012, 11(6): 2179-2199. doi: 10.3934/cpaa.2012.11.2179

Preconditioning operators and $L^\infty$ attractor for a class of reaction-diffusion systems

1. 

Laboratoire de Mathématiques CNRS UMR 6623, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex

2. 

Université Chouaïb Doukkali, Faculté des Sciences, Département de Mathématiques et Informatique, BP20 24000 El Jadida, Morocco

Received  October 2010 Revised  April 2011 Published  April 2012

We suggest an approach for proving global existence of bounded solutions and existence of a maximal attractor in $L^\infty$ for a class of abstract $3\times 3$ reaction-diffusion systems. The motivation comes from the concrete example of ``facilitated diffusion'' system with different non-homogeneous boundary conditions modelling the blood oxigenation reaction $Hb+O_2 \rightleftharpoons HbO_2$.
The method uses classical tools of linear semigroup theory, the $L^p$ techniques developed by Martin and Pierre [16] and B\'enilan and Labani [6] and the hint of ``preconditioning operators'': roughly speaking, the study of solutions of $(\partial_t +A_i)u=f$ is reduced to the study of solutions to

$(\partial_t+B)(B^{-1}u)=B^{-1}f+(I-B^{-1}A_i)u,$

with a conveniently chosen operator $B$. In particular, we need the $L^\infty-L^p$ regularity of $B^{-1}A_i$ and the positivity of the operator $(B^{-1}A_i-I)$ on the domain of $A_i$.
The same ideas can be applied to systems of higher dimension. To give an example, we prove the existence of a maximal attractor in $L^\infty$ for the $5\times 5$ system of facilitated diffusion modelling the coupled reactions $Hb+O_2 \rightleftharpoons HbO_2$, $Hb+CO_2 \rightleftharpoons HbCO_2$.

Citation: Boris Andreianov, Halima Labani. Preconditioning operators and $L^\infty$ attractor for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2179-2199. doi: 10.3934/cpaa.2012.11.2179
References:
[1]

S. Amraoui and H. Labani, Global existence and maximal attractor of facilitated diffusion model,, Forum Math., 15 (2003), 923.   Google Scholar

[2]

W. Arendt, "Semigroups and Evolution Equations: Functional Calculus, Regularity and Kernel Estimates,", Evolutionary equations. Vol. I, (2004), 1.   Google Scholar

[3]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,", Noordhoff International Publishing, (1976).   Google Scholar

[4]

P. Baras, J.-C. Hassan and L. Véron, Compacité de l'opérateur définissant la solution d'une équation d'évolution non homogéne,, C.R. Acad. Sci. Paris S\'er. A, 284 (): 799.   Google Scholar

[5]

Ph. Bénilan and H. Labani, "Systèmes de récation-diffusion abstraites" (French),, Publications Math\'ematiques de Besan\ccon. Analyse Non Lin\'eaire, (1994).   Google Scholar

[6]

Ph. Bénilan and H. Labani, Existence of attractors in $L^\infty(\Omega)$ for a class of reaction-diffusion systems,, In, (2004), 771.  doi: 10.1007/978-3-0348-7924-8_36.  Google Scholar

[7]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology,", Vol. 2, (1988).   Google Scholar

[8]

N. Dunford and J. T. Schwartz, "Linear Operators. Parts I and II,", Wiley-Interscience, (1958).   Google Scholar

[9]

W. Ebel, Existence and asymptotic behaviour of solutions in a system of reaction diffusion equations,, Math. Z., 193 (1986), 41.  doi: 10.1007/BF01163353.  Google Scholar

[10]

W. Feng, Global existence and boundedness of the solution for a blood oxigenation model,, J. Math. Anal. Appl., 181 (1994), 462.  doi: 10.1006/jmaa.1994.1035.  Google Scholar

[11]

W. Feng, Stability and asymptotic behaviour in a reaction-diffusion system,, M3AS Math. Models Meth. Appl. Sci., 17 (1994), 155.  doi: 10.1002/mma.1670170302.  Google Scholar

[12]

A. Friedman, "Partial Differential Equations,", New York, (1969).   Google Scholar

[13]

D. Gilbard and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Grundl. Math. Wiss. 224, (1983).   Google Scholar

[14]

H. Labani, "Comportement asymptotique de certaines équations de réaction-diffusion et d'une classe d'équations des ondes" (French),, Th\`ese d'\'Etat, (2002).   Google Scholar

[15]

D. Lamberton, Équations d'évolution lináires associés à des semi-groupes de contractions dans les espaces $L^p$, (French), J. Funct. Anal., 72 (1987), 252.  doi: 10.1016/0022-1236(87)90088-7.  Google Scholar

[16]

R. H. Martin and M. Pierre, Nonlinear reaction-diffusion systems,, In, (1992), 363.  doi: 10.1016/S0076-5392(08)62804-0.  Google Scholar

[17]

R. Martin and M. Pierre, Influence of mixed boundary conditions in some reaction-diffusion systems,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1053.  doi: 10.1017/S0308210500026883.  Google Scholar

[18]

J. Morgan, Boundedness and decay results for reaction-diffusion systems,, SIAM J. Math. Anal., 21 (1990), 1172.  doi: 10.1137/0521064.  Google Scholar

[19]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Appl. Math. Sci. 44, (1983).   Google Scholar

[20]

F. Rothe, "Global Solutions of Reaction-diffusion Systems,", Lect. Notes in Math. 1072, (1072).   Google Scholar

[21]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,", Appl. Math. Sci. 68, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

show all references

References:
[1]

S. Amraoui and H. Labani, Global existence and maximal attractor of facilitated diffusion model,, Forum Math., 15 (2003), 923.   Google Scholar

[2]

W. Arendt, "Semigroups and Evolution Equations: Functional Calculus, Regularity and Kernel Estimates,", Evolutionary equations. Vol. I, (2004), 1.   Google Scholar

[3]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,", Noordhoff International Publishing, (1976).   Google Scholar

[4]

P. Baras, J.-C. Hassan and L. Véron, Compacité de l'opérateur définissant la solution d'une équation d'évolution non homogéne,, C.R. Acad. Sci. Paris S\'er. A, 284 (): 799.   Google Scholar

[5]

Ph. Bénilan and H. Labani, "Systèmes de récation-diffusion abstraites" (French),, Publications Math\'ematiques de Besan\ccon. Analyse Non Lin\'eaire, (1994).   Google Scholar

[6]

Ph. Bénilan and H. Labani, Existence of attractors in $L^\infty(\Omega)$ for a class of reaction-diffusion systems,, In, (2004), 771.  doi: 10.1007/978-3-0348-7924-8_36.  Google Scholar

[7]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology,", Vol. 2, (1988).   Google Scholar

[8]

N. Dunford and J. T. Schwartz, "Linear Operators. Parts I and II,", Wiley-Interscience, (1958).   Google Scholar

[9]

W. Ebel, Existence and asymptotic behaviour of solutions in a system of reaction diffusion equations,, Math. Z., 193 (1986), 41.  doi: 10.1007/BF01163353.  Google Scholar

[10]

W. Feng, Global existence and boundedness of the solution for a blood oxigenation model,, J. Math. Anal. Appl., 181 (1994), 462.  doi: 10.1006/jmaa.1994.1035.  Google Scholar

[11]

W. Feng, Stability and asymptotic behaviour in a reaction-diffusion system,, M3AS Math. Models Meth. Appl. Sci., 17 (1994), 155.  doi: 10.1002/mma.1670170302.  Google Scholar

[12]

A. Friedman, "Partial Differential Equations,", New York, (1969).   Google Scholar

[13]

D. Gilbard and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Grundl. Math. Wiss. 224, (1983).   Google Scholar

[14]

H. Labani, "Comportement asymptotique de certaines équations de réaction-diffusion et d'une classe d'équations des ondes" (French),, Th\`ese d'\'Etat, (2002).   Google Scholar

[15]

D. Lamberton, Équations d'évolution lináires associés à des semi-groupes de contractions dans les espaces $L^p$, (French), J. Funct. Anal., 72 (1987), 252.  doi: 10.1016/0022-1236(87)90088-7.  Google Scholar

[16]

R. H. Martin and M. Pierre, Nonlinear reaction-diffusion systems,, In, (1992), 363.  doi: 10.1016/S0076-5392(08)62804-0.  Google Scholar

[17]

R. Martin and M. Pierre, Influence of mixed boundary conditions in some reaction-diffusion systems,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1053.  doi: 10.1017/S0308210500026883.  Google Scholar

[18]

J. Morgan, Boundedness and decay results for reaction-diffusion systems,, SIAM J. Math. Anal., 21 (1990), 1172.  doi: 10.1137/0521064.  Google Scholar

[19]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Appl. Math. Sci. 44, (1983).   Google Scholar

[20]

F. Rothe, "Global Solutions of Reaction-diffusion Systems,", Lect. Notes in Math. 1072, (1072).   Google Scholar

[21]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,", Appl. Math. Sci. 68, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[1]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[2]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[3]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[4]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[5]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[6]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[7]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[8]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[9]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[10]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[11]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[12]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[13]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[14]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[15]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[16]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[17]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[18]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[19]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[20]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]