November  2012, 11(6): 2213-2219. doi: 10.3934/cpaa.2012.11.2213

The maximal regularity operator on tent spaces

1. 

Univ. Paris-Sud, laboratoire de Mathématiques, UMR 8628, F-91405, Orsay; CNRS, F-91405, Orsay, France

2. 

LATP-UMR 6632, FST Saint-Jérôme - Case Cour A, Univ. Paul Cézanne, F-13397 Marseille Cédex 20, France

3. 

Université Lille 1, Laboratoire Paul Painlevé, F-59655, Villeneuve d'Ascq, France

Received  November 2010 Revised  December 2010 Published  April 2012

Recently, Auscher and Axelsson gave a new approach to non-smooth boundary value problems with $L^2$ data, that relies on some appropriate weighted maximal regularity estimates. As part of the development of the corresponding $L^p$ theory, we prove here the relevant weighted maximal estimates in tent spaces $T^{p, 2}$ for $p$ in a certain open range. We also study the case $p=\infty$.
Citation: Pascal Auscher, Sylvie Monniaux, Pierre Portal. The maximal regularity operator on tent spaces. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2213-2219. doi: 10.3934/cpaa.2012.11.2213
References:
[1]

P. Auscher, On necessary and sufficient conditions for $L^p$ estimates of Riesz transforms associated to elliptic operators on $R^n$ and related estimates, Mem. Amer. Math. Soc., 871 (2007).

[2]

P. Auscher and A. Axelsson, Weighted maximal regularity estimates and solvability of elliptic systems I, Inventiones Math., 184 (2011), 47-115. doi: 10.1007/s00222-010-0285-4.

[3]

P. Auscher and A. Axelsson, Remarks on maximal regularity estimates, Parabolic Problems: Herbert Amann Festschrift, Birkhäuser, to appear. arXiv:0912.4482.

[4]

P. Auscher, S. Hofmann, M. Lacey, A. McIntosh and P. Tchamitchian, The solution of the Kato square root problem for second order elliptic operators on $\mathbb{R}^{N}$, Ann. of Math., 156 (2002), 633-654.

[5]

P. Auscher, A. McIntosh and E. Russ, Hardy spaces of differential forms and Riesz transforms on Riemannian manifolds, J. Geom. Anal., 18 (2008), 192-248. doi: 10.1007/s12220-007-9003-x.

[6]

R. Coifman, Y. Meyer and E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal., 62 (1985), 304-335. doi: 10.1016/0022-1236(85)90007-2.

[7]

C. Fefferman and E. M. Stein, $H^p$ spaces of several variables, Acta Math., 129 (1972), 137-193. doi: 10.1007/BF02392215.

[8]

T. Hytönen, A. McIntosh and P. Portal, Kato's square root problem in Banach spaces, J. Funct. Anal., 254 (2008), 675-726. doi: 10.1016/j.jfa.2007.10.006.

[9]

T. Hytönen, J. van Neerven and P. Portal, Conical square function estimates in UMD Banach spaces and applications to $H^{\infty}$-functional calculi, J. Analyse Math., 106 (2008), 317-351. doi: 10.1007/s11854-008-0051-3.

[10]

N. Kalton and G. Lancien, A solution to the problem of $L_p$ maximal-regularity, Math. Z., 235 (2000), 559-568. doi: 10.1007/PL00004816.

[11]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35. doi: 10.1006/aima.2000.1937.

[12]

H. Koch and T. Lamm, Geometric flows with rough initial data, preprint, arXiv:0902.1488v1.

[13]

N. V. Krylov, A parabolic Littlewood-Paley inequality with applications to parabolic equations, Topol. Methods Nonlinear Anal., 4 (1994), 355-364.

[14]

P. C. Kunstmann and L. Weis, Maximal $L^p$ regularity for parabolic problems, Fourier multiplier theorems and $H^{\infty}$-functional calculus, in "Functional Analytic Methods for Evolution Equations" (M. Iannelli, R. Nagel and S.Piazzera eds.), Lect. Notes in Math., 1855, Springer-Verlag (2004).

[15]

J. van Neerven, M. Veraar and L. Weis, Stochastic maximal $L^p$ regularity, submitted, ArXiv:1004.1309v2.

[16]

L. de Simon, Un'applicazione della theoria degli integrali singolari allo studio delle equazioni differenziali lineare astratte del primo ordine, Rend. Sem. Mat., Univ. Padova, (1964), 205-223.

[17]

L.Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity, Math.Ann., 319 (2001), 735-758. doi: 10.1007/PL00004457.

show all references

References:
[1]

P. Auscher, On necessary and sufficient conditions for $L^p$ estimates of Riesz transforms associated to elliptic operators on $R^n$ and related estimates, Mem. Amer. Math. Soc., 871 (2007).

[2]

P. Auscher and A. Axelsson, Weighted maximal regularity estimates and solvability of elliptic systems I, Inventiones Math., 184 (2011), 47-115. doi: 10.1007/s00222-010-0285-4.

[3]

P. Auscher and A. Axelsson, Remarks on maximal regularity estimates, Parabolic Problems: Herbert Amann Festschrift, Birkhäuser, to appear. arXiv:0912.4482.

[4]

P. Auscher, S. Hofmann, M. Lacey, A. McIntosh and P. Tchamitchian, The solution of the Kato square root problem for second order elliptic operators on $\mathbb{R}^{N}$, Ann. of Math., 156 (2002), 633-654.

[5]

P. Auscher, A. McIntosh and E. Russ, Hardy spaces of differential forms and Riesz transforms on Riemannian manifolds, J. Geom. Anal., 18 (2008), 192-248. doi: 10.1007/s12220-007-9003-x.

[6]

R. Coifman, Y. Meyer and E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal., 62 (1985), 304-335. doi: 10.1016/0022-1236(85)90007-2.

[7]

C. Fefferman and E. M. Stein, $H^p$ spaces of several variables, Acta Math., 129 (1972), 137-193. doi: 10.1007/BF02392215.

[8]

T. Hytönen, A. McIntosh and P. Portal, Kato's square root problem in Banach spaces, J. Funct. Anal., 254 (2008), 675-726. doi: 10.1016/j.jfa.2007.10.006.

[9]

T. Hytönen, J. van Neerven and P. Portal, Conical square function estimates in UMD Banach spaces and applications to $H^{\infty}$-functional calculi, J. Analyse Math., 106 (2008), 317-351. doi: 10.1007/s11854-008-0051-3.

[10]

N. Kalton and G. Lancien, A solution to the problem of $L_p$ maximal-regularity, Math. Z., 235 (2000), 559-568. doi: 10.1007/PL00004816.

[11]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35. doi: 10.1006/aima.2000.1937.

[12]

H. Koch and T. Lamm, Geometric flows with rough initial data, preprint, arXiv:0902.1488v1.

[13]

N. V. Krylov, A parabolic Littlewood-Paley inequality with applications to parabolic equations, Topol. Methods Nonlinear Anal., 4 (1994), 355-364.

[14]

P. C. Kunstmann and L. Weis, Maximal $L^p$ regularity for parabolic problems, Fourier multiplier theorems and $H^{\infty}$-functional calculus, in "Functional Analytic Methods for Evolution Equations" (M. Iannelli, R. Nagel and S.Piazzera eds.), Lect. Notes in Math., 1855, Springer-Verlag (2004).

[15]

J. van Neerven, M. Veraar and L. Weis, Stochastic maximal $L^p$ regularity, submitted, ArXiv:1004.1309v2.

[16]

L. de Simon, Un'applicazione della theoria degli integrali singolari allo studio delle equazioni differenziali lineare astratte del primo ordine, Rend. Sem. Mat., Univ. Padova, (1964), 205-223.

[17]

L.Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity, Math.Ann., 319 (2001), 735-758. doi: 10.1007/PL00004457.

[1]

Masakatsu Suzuki, Hideaki Matsunaga. Stability criteria for a class of linear differential equations with off-diagonal delays. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1381-1391. doi: 10.3934/dcds.2009.24.1381

[2]

Radjesvarane Alexandre, Lingbing He. Integral estimates for a linear singular operator linked with Boltzmann operators part II: High singularities $1\le\nu<2$. Kinetic and Related Models, 2008, 1 (4) : 491-513. doi: 10.3934/krm.2008.1.491

[3]

Dachun Yang, Sibei Yang. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators satisfying Gaussian estimates. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2135-2160. doi: 10.3934/cpaa.2016031

[4]

Yuanzhen Shao. Continuous maximal regularity on singular manifolds and its applications. Evolution Equations and Control Theory, 2016, 5 (2) : 303-335. doi: 10.3934/eect.2016006

[5]

Giuseppe Da Prato, Alessandra Lunardi. Maximal dissipativity of a class of elliptic degenerate operators in weighted $L^2$ spaces. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 751-760. doi: 10.3934/dcdsb.2006.6.751

[6]

Seongyeon Kim, Yehyun Kwon, Ihyeok Seo. Strichartz estimates and local regularity for the elastic wave equation with singular potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1897-1911. doi: 10.3934/dcds.2020344

[7]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Hiroki Tanabe, Atsushi Yagi. Necessary and sufficient conditions for maximal regularity in the study of elliptic differential equations in Hölder spaces. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 973-987. doi: 10.3934/dcds.2008.22.973

[8]

Tôn Việt Tạ. Non-autonomous stochastic evolution equations in Banach spaces of martingale type 2: Strict solutions and maximal regularity. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4507-4542. doi: 10.3934/dcds.2017193

[9]

Peter Weidemaier. Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm. Electronic Research Announcements, 2002, 8: 47-51.

[10]

Pablo Blanc, Juan J. Manfredi, Julio D. Rossi. Games for Pucci's maximal operators. Journal of Dynamics and Games, 2019, 6 (4) : 277-289. doi: 10.3934/jdg.2019019

[11]

Jeremy LeCrone, Gieri Simonett. Continuous maximal regularity and analytic semigroups. Conference Publications, 2011, 2011 (Special) : 963-970. doi: 10.3934/proc.2011.2011.963

[12]

Alexander Gorodnik, Frédéric Paulin. Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows. Journal of Modern Dynamics, 2014, 8 (1) : 25-59. doi: 10.3934/jmd.2014.8.25

[13]

Sibei Yang, Dachun Yang, Wenxian Ma. Global regularity estimates for Neumann problems of elliptic operators with coefficients having a BMO anti-symmetric part in NTA domains. Communications on Pure and Applied Analysis, 2022, 21 (3) : 959-998. doi: 10.3934/cpaa.2022006

[14]

Felipe Alvarez, Juan Peypouquet. Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1109-1128. doi: 10.3934/dcds.2009.25.1109

[15]

Karim Boulabiar, Gerard Buskes and Gleb Sirotkin. A strongly diagonal power of algebraic order bounded disjointness preserving operators. Electronic Research Announcements, 2003, 9: 94-98.

[16]

Yoshikazu Giga, Jürgen Saal. $L^1$ maximal regularity for the laplacian and applications. Conference Publications, 2011, 2011 (Special) : 495-504. doi: 10.3934/proc.2011.2011.495

[17]

Jeremy LeCrone, Gieri Simonett. On quasilinear parabolic equations and continuous maximal regularity. Evolution Equations and Control Theory, 2020, 9 (1) : 61-86. doi: 10.3934/eect.2020017

[18]

Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure and Applied Analysis, 2005, 4 (1) : 1-8. doi: 10.3934/cpaa.2005.4.1

[19]

Vincenzo Recupero. Hysteresis operators in metric spaces. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : 773-792. doi: 10.3934/dcdss.2015.8.773

[20]

Patricia J.Y. Wong. Existence of solutions to singular integral equations. Conference Publications, 2009, 2009 (Special) : 818-827. doi: 10.3934/proc.2009.2009.818

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]