Citation: |
[1] |
F. Alouges and V. Bonnaillie-Noël, Numerical computations of fundamental eigenstates for the Schrödinger operator under constant magnetic field, Numer. Methods Partial Differential Equations, 22 (2006), 1090-1105.doi: 10.1002/num.20137. |
[2] |
A. Bernoff and P. Sternberg, Onset of superconductivity in decreasing fields for general domains, J. Math. Phys., 39 (1998), 1272-1284.doi: 10.1063/1.532379. |
[3] |
C. Bolley, Modélisation du champ de retard à la condensation d'un supraconducteur par un problème de bifurcation, RAIRO Modél. Math. Anal. Numér., 26 (1992), 235-287. |
[4] |
C. Bolley and B. Helffer, An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material, Ann. Inst. H. Poincaré Phys. Théor., 58 (1993), 189-233. |
[5] |
V. Bonnaillie, "Analyse mathématique de la supraconductivité dans un domaine à coins; méthodes semi-classiques et numériques," Thèse de doctorat, Université Paris XI - Orsay, 2003. |
[6] |
V. Bonnaillie, On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners, Asymptot. Anal., 41 (2005), 215-258. |
[7] |
V. Bonnaillie-Noël and M. Dauge, Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners, Ann. Henri Poincaré, 7 (2006), 899-931.doi: 10.1007/s00023-006-0271-y. |
[8] |
V. Bonnaillie-Noël, M. Dauge, D. Martin and G. Vial, Computations of the first eigenpairs for the schrödinger operator with magnetic field, Comput. Methods Appl. Mech. Engng., 196 (2007), 3841-3858.doi: 10.1016/j.cma.2006.10.041. |
[9] |
V. Bonnaillie-Noël, M. Dauge, N. Popoff and N. Raymond, Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions, Z. Angew. Math. Phys., DOI 10.1007/s00033-011-0163-y (2011).doi: 10.1007/s00033-011-0163-y. |
[10] |
V. Bonnaillie-Noël and S. Fournais, Superconductivity in domains with corners, Reviews in Mathematical Physics, 19 (2007), 607-637.doi: 10.1142/S0129055X07003061. |
[11] |
S. J. Chapman, Nucleation of superconductivity in decreasing fields. I, European J. Appl. Math., 5 (1994), 449-468.doi: 10.1017/S095679250000156X. |
[12] |
M. Dauge and B. Helffer, Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators, J. Differential Equations, 104 (1993), 243-262.doi: 10.1006/jdeq.1993.1071. |
[13] |
P.-G. De Gennes and D. Saint-James, Onset of superconductivity in decreasing fields, Physics Letters, 7 (1963), 306-308.doi: 10.1016/0031-9163(63)90047-7. |
[14] |
S. Fournais and B. Helffer, Energy asymptotics for type {II superconductors}, Calc. Var., 24 (2005), 341-376.doi: 10.1007/s00526-005-0333-x. |
[15] |
S. Fournais and B. Helffer, Accurate eigenvalue estimates for the magnetic Neumann Laplacian, Annales Inst. Fourier, 56 (2006), 1-67.doi: 10.5802/aif.2171. |
[16] |
S. Fournais and B. Helffer, On the third critical field in Ginzburg-Landau theory, Comm. Math. Phys., 266 (2006), 153-196.doi: 10.1007/s00220-006-0006-4. |
[17] |
S. Fournais and B. Helffer, "Spectral Methods in Surface Superconductivity," Progress in Nonlinear Differential Equations and their Applications, 77. Birkhäuser Boston Inc., Boston, MA 2010. |
[18] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag 2001. |
[19] |
E. M. Harrell, Double wells, Comm. Math. Phys., 75 (1980), 239-261.doi: 10.1007/BF01212711. |
[20] |
P. Hartmann, "Ordinary Differential Equations," Wiley, New-York 1964. |
[21] |
B. Helffer, "Semi-classical Analysis for the Schrödinger Operator and Applications," volume 1336 of Lecture Notes in Mathematics, |
[22] |
B. Helffer and A. Mohamed, Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal., 138 (1996), 40-81.doi: 10.1006/jfan.1996.0056. |
[23] |
B. Helffer and A. Morame, Magnetic bottles for the Neumann problem: the case of dimension 3, Proc. Indian Acad. Sci. Math. Sci., 112 (2002), 71-84.doi: 10.1007/BF02829641. |
[24] |
B. Helffer and A. Morame, Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 (general case), Ann. Sci. École Norm. Sup., 37 (2004), 105-170.doi: 10.1016/j.ansens.2003.04.003. |
[25] |
B. Helffer and X.-B. Pan, Upper critical field and location of surface nucleation of superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 145-181.doi: 10.1016/S0294-1449(02)00005-7. |
[26] |
T. Kato, On the upper and lower bounds of eigenvalues, J. Phys. Soc. Japan, 4 (1949), 334-339.doi: 10.1143/JPSJ.4.334. |
[27] |
K. Lu and X.-B. Pan, Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Phys., 40 (1999), 2647-2670.doi: 10.1063/1.532721. |
[28] |
K. Lu and X.-B. Pan, Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity, Phys. D, 127 (1999), 73-104.doi: 10.1016/S0167-2789(98)00246-2. |
[29] |
K. Lu and X.-B. Pan, Gauge invariant eigenvalue problems in $R^2$ and in $R_+^2$, Trans. Amer. Math. Soc., 352 (2000), 1247-1276.doi: 10.1090/S0002-9947-99-02516-7. |
[30] |
N. Raymond, On the semiclassical 3D Neumann Laplacian with variable magnetic field, Asymptot. Anal., 68 (2010), 1-40. |
[31] |
Y. Sibuya, "Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient," Noth-Holland 1975. |