\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Harmonic oscillators with Neumann condition on the half-line

Abstract Related Papers Cited by
  • We consider the spectrum of the family of one-dimensional self-adjoint operators $-{\mathrm{d}}^2/{\mathrm{d}}t^2+(t-\zeta)^2$, $\zeta\in \mathbb{R}$ on the half-line with Neumann boundary condition. It is well known that the first eigenvalue $\mu(\zeta)$ of this family of harmonic oscillators has a unique minimum when $\zeta\in\mathbb{R}$. This paper is devoted to the accurate computations of this minimum $\Theta_{0}$ and $\Phi(0)$ where $\Phi$ is the associated positive normalized eigenfunction. We propose an algorithm based on finite element method to determine this minimum and we give a sharp estimate of the numerical accuracy. We compare these results with a finite element method.
    Mathematics Subject Classification: Primary: 35P15, 65F15, 65N25; Secondary: 35J10, 65N30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Alouges and V. Bonnaillie-Noël, Numerical computations of fundamental eigenstates for the Schrödinger operator under constant magnetic field, Numer. Methods Partial Differential Equations, 22 (2006), 1090-1105.doi: 10.1002/num.20137.

    [2]

    A. Bernoff and P. Sternberg, Onset of superconductivity in decreasing fields for general domains, J. Math. Phys., 39 (1998), 1272-1284.doi: 10.1063/1.532379.

    [3]

    C. Bolley, Modélisation du champ de retard à la condensation d'un supraconducteur par un problème de bifurcation, RAIRO Modél. Math. Anal. Numér., 26 (1992), 235-287.

    [4]

    C. Bolley and B. Helffer, An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material, Ann. Inst. H. Poincaré Phys. Théor., 58 (1993), 189-233.

    [5]

    V. Bonnaillie, "Analyse mathématique de la supraconductivité dans un domaine à coins; méthodes semi-classiques et numériques," Thèse de doctorat, Université Paris XI - Orsay, 2003.

    [6]

    V. Bonnaillie, On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners, Asymptot. Anal., 41 (2005), 215-258.

    [7]

    V. Bonnaillie-Noël and M. Dauge, Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners, Ann. Henri Poincaré, 7 (2006), 899-931.doi: 10.1007/s00023-006-0271-y.

    [8]

    V. Bonnaillie-Noël, M. Dauge, D. Martin and G. Vial, Computations of the first eigenpairs for the schrödinger operator with magnetic field, Comput. Methods Appl. Mech. Engng., 196 (2007), 3841-3858.doi: 10.1016/j.cma.2006.10.041.

    [9]

    V. Bonnaillie-Noël, M. Dauge, N. Popoff and N. Raymond, Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions, Z. Angew. Math. Phys., DOI 10.1007/s00033-011-0163-y (2011).doi: 10.1007/s00033-011-0163-y.

    [10]

    V. Bonnaillie-Noël and S. Fournais, Superconductivity in domains with corners, Reviews in Mathematical Physics, 19 (2007), 607-637.doi: 10.1142/S0129055X07003061.

    [11]

    S. J. Chapman, Nucleation of superconductivity in decreasing fields. I, European J. Appl. Math., 5 (1994), 449-468.doi: 10.1017/S095679250000156X.

    [12]

    M. Dauge and B. Helffer, Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators, J. Differential Equations, 104 (1993), 243-262.doi: 10.1006/jdeq.1993.1071.

    [13]

    P.-G. De Gennes and D. Saint-James, Onset of superconductivity in decreasing fields, Physics Letters, 7 (1963), 306-308.doi: 10.1016/0031-9163(63)90047-7.

    [14]

    S. Fournais and B. Helffer, Energy asymptotics for type {II superconductors}, Calc. Var., 24 (2005), 341-376.doi: 10.1007/s00526-005-0333-x.

    [15]

    S. Fournais and B. Helffer, Accurate eigenvalue estimates for the magnetic Neumann Laplacian, Annales Inst. Fourier, 56 (2006), 1-67.doi: 10.5802/aif.2171.

    [16]

    S. Fournais and B. Helffer, On the third critical field in Ginzburg-Landau theory, Comm. Math. Phys., 266 (2006), 153-196.doi: 10.1007/s00220-006-0006-4.

    [17]

    S. Fournais and B. Helffer, "Spectral Methods in Surface Superconductivity," Progress in Nonlinear Differential Equations and their Applications, 77. Birkhäuser Boston Inc., Boston, MA 2010.

    [18]

    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag 2001.

    [19]

    E. M. Harrell, Double wells, Comm. Math. Phys., 75 (1980), 239-261.doi: 10.1007/BF01212711.

    [20]

    P. Hartmann, "Ordinary Differential Equations," Wiley, New-York 1964.

    [21]

    B. Helffer, "Semi-classical Analysis for the Schrödinger Operator and Applications," volume 1336 of Lecture Notes in Mathematics,

    [22]

    B. Helffer and A. Mohamed, Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal., 138 (1996), 40-81.doi: 10.1006/jfan.1996.0056.

    [23]

    B. Helffer and A. Morame, Magnetic bottles for the Neumann problem: the case of dimension 3, Proc. Indian Acad. Sci. Math. Sci., 112 (2002), 71-84.doi: 10.1007/BF02829641.

    [24]

    B. Helffer and A. Morame, Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 (general case), Ann. Sci. École Norm. Sup., 37 (2004), 105-170.doi: 10.1016/j.ansens.2003.04.003.

    [25]

    B. Helffer and X.-B. Pan, Upper critical field and location of surface nucleation of superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 145-181.doi: 10.1016/S0294-1449(02)00005-7.

    [26]

    T. Kato, On the upper and lower bounds of eigenvalues, J. Phys. Soc. Japan, 4 (1949), 334-339.doi: 10.1143/JPSJ.4.334.

    [27]

    K. Lu and X.-B. Pan, Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Phys., 40 (1999), 2647-2670.doi: 10.1063/1.532721.

    [28]

    K. Lu and X.-B. Pan, Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity, Phys. D, 127 (1999), 73-104.doi: 10.1016/S0167-2789(98)00246-2.

    [29]

    K. Lu and X.-B. Pan, Gauge invariant eigenvalue problems in $R^2$ and in $R_+^2$, Trans. Amer. Math. Soc., 352 (2000), 1247-1276.doi: 10.1090/S0002-9947-99-02516-7.

    [30]

    N. Raymond, On the semiclassical 3D Neumann Laplacian with variable magnetic field, Asymptot. Anal., 68 (2010), 1-40.

    [31]

    Y. Sibuya, "Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient," Noth-Holland 1975.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(66) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return