November  2012, 11(6): 2261-2290. doi: 10.3934/cpaa.2012.11.2261

Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions

1. 

Université de La Rochelle, Laboratoire de Mathématiques Images et Applications EA 3165, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1

2. 

Dipartimento di Matematica, Università di Modena e Reggio Emilia, Via Campi 213/B, I-41125 Modena

3. 

Université de Poitiers, Mathématiques SP2MI, 86962 Chasseneuil Futuroscope Cedex

Received  December 2010 Revised  December 2010 Published  April 2012

This paper is devoted to the study of the well-posedness and the long time behavior of the Caginalp phase-field model with singular potentials and dynamic boundary conditions. Thanks to a suitable definition of solutions, coinciding with the strong ones under proper assumptions on the bulk and surface potentials, we are able to get dissipative estimates, leading to the existence of the global attractor with finite fractal dimension, as well as of an exponential attractor.
Citation: Laurence Cherfils, Stefania Gatti, Alain Miranville. Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2261-2290. doi: 10.3934/cpaa.2012.11.2261
References:
[1]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Rational Mech. Anal., 92 (1986), 205.  doi: 10.1007/BF00254827.  Google Scholar

[2]

L. Cherfils, S. Gatti and A. Miranville, Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potentials, (Corrigendum, 343 (2008), 1029.  doi: 10.1016/j.jmaa.2008.07.058.  Google Scholar

[3]

L. Cherfils, S. Gatti and A. Miranville, Finite dimensional attractors for the Caginalp system with singular potentials and dynamic boundary conditions,, Bull. Transilvania University Bra\csov-Series III: Mathematics, 2 (2009), 25.   Google Scholar

[4]

L. Cherfils and A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials,, Appl. Math., 54 (2009), 89.  doi: 10.1007/s10492-009-0008-6.  Google Scholar

[5]

L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials,, Milan J. Math., 79 (2011), 561.  doi: 10.1007/s00032-011-0165-4.  Google Scholar

[6]

P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation,, Discrete Contin. Dynam. Systems, 10 (2004), 211.  doi: 10.3934/dcds.2004.10.211.  Google Scholar

[7]

H. P. Fischer, P. Maass and W. Dieterich, Novel surface modes in spinodal decomposition,, Phys. Rev. Lett., 79 (1997), 893.  doi: 10.1103/PhysRevLett.79.893.  Google Scholar

[8]

H. P. Fischer, P. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows,, Europhys. Lett., 42 (1998), 49.  doi: 10.1209/epl/i1998-00550-y.  Google Scholar

[9]

H. P. Fischer, J. Reinhard, W. Dieterich, J.-F. Gouyet, P. Maass, A. Majhofer and D. Reinel, Time-dependent density functional theory and the kinetics of lattice gas systems in contact with a wall,, J. Chem. Phys., 108 (1998), 3028.  doi: 10.1063/1.475690.  Google Scholar

[10]

S. Gatti and A. Miranville, Asymptotic behavior of a phase-field system with dynamic boundary conditions,, in, (2006), 149.  doi: 10.1201/9781420011135.ch9.  Google Scholar

[11]

G. Gilardi, A. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions,, Commun. Pure Appl. Anal., 8 (2009), 881.  doi: 10.3934/cpaa.2009.8.881.  Google Scholar

[12]

G. Gilardi, A. Miranville and G. Schimperna, Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions,, Chinese Ann. Math., 31 (2010), 679.  doi: 10.1007/s11401-010-0602-7.  Google Scholar

[13]

M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials,, Discrete Contin. Dynam. Systems, 28 (2010), 67.  doi: 10.3934/dcds.2010.28.67.  Google Scholar

[14]

J. Málek and D. Prážak, Large time behavior via the method of $l$-trajectories,, J. Diff. Eqns., 181 (2002), 243.  doi: 10.1006/jdeq.2001.4087.  Google Scholar

[15]

A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials,, Math. Methods Appl. Sci., 27 (2004), 545.  doi: 10.1002/mma.464.  Google Scholar

[16]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions,, Math. Methods Appl. Sci., 28 (2005), 709.  doi: 10.1002/mma.590.  Google Scholar

[17]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in, (2008), 103.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[18]

A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions,, Discrete Contin. Dynam. Systems, 28 (2010), 275.  doi: 10.3934/dcds.2010.28.275.  Google Scholar

[19]

G. Ruiz Goldstein, A. Miranville and G. Schimperna, A Cahn-Hilliard equation in a domain with non-permeable walls,, Phys. D, 240 (2011), 754.  doi: 10.1016/j.physd.2010.12.007.  Google Scholar

show all references

References:
[1]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Rational Mech. Anal., 92 (1986), 205.  doi: 10.1007/BF00254827.  Google Scholar

[2]

L. Cherfils, S. Gatti and A. Miranville, Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potentials, (Corrigendum, 343 (2008), 1029.  doi: 10.1016/j.jmaa.2008.07.058.  Google Scholar

[3]

L. Cherfils, S. Gatti and A. Miranville, Finite dimensional attractors for the Caginalp system with singular potentials and dynamic boundary conditions,, Bull. Transilvania University Bra\csov-Series III: Mathematics, 2 (2009), 25.   Google Scholar

[4]

L. Cherfils and A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials,, Appl. Math., 54 (2009), 89.  doi: 10.1007/s10492-009-0008-6.  Google Scholar

[5]

L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials,, Milan J. Math., 79 (2011), 561.  doi: 10.1007/s00032-011-0165-4.  Google Scholar

[6]

P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation,, Discrete Contin. Dynam. Systems, 10 (2004), 211.  doi: 10.3934/dcds.2004.10.211.  Google Scholar

[7]

H. P. Fischer, P. Maass and W. Dieterich, Novel surface modes in spinodal decomposition,, Phys. Rev. Lett., 79 (1997), 893.  doi: 10.1103/PhysRevLett.79.893.  Google Scholar

[8]

H. P. Fischer, P. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows,, Europhys. Lett., 42 (1998), 49.  doi: 10.1209/epl/i1998-00550-y.  Google Scholar

[9]

H. P. Fischer, J. Reinhard, W. Dieterich, J.-F. Gouyet, P. Maass, A. Majhofer and D. Reinel, Time-dependent density functional theory and the kinetics of lattice gas systems in contact with a wall,, J. Chem. Phys., 108 (1998), 3028.  doi: 10.1063/1.475690.  Google Scholar

[10]

S. Gatti and A. Miranville, Asymptotic behavior of a phase-field system with dynamic boundary conditions,, in, (2006), 149.  doi: 10.1201/9781420011135.ch9.  Google Scholar

[11]

G. Gilardi, A. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions,, Commun. Pure Appl. Anal., 8 (2009), 881.  doi: 10.3934/cpaa.2009.8.881.  Google Scholar

[12]

G. Gilardi, A. Miranville and G. Schimperna, Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions,, Chinese Ann. Math., 31 (2010), 679.  doi: 10.1007/s11401-010-0602-7.  Google Scholar

[13]

M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials,, Discrete Contin. Dynam. Systems, 28 (2010), 67.  doi: 10.3934/dcds.2010.28.67.  Google Scholar

[14]

J. Málek and D. Prážak, Large time behavior via the method of $l$-trajectories,, J. Diff. Eqns., 181 (2002), 243.  doi: 10.1006/jdeq.2001.4087.  Google Scholar

[15]

A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials,, Math. Methods Appl. Sci., 27 (2004), 545.  doi: 10.1002/mma.464.  Google Scholar

[16]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions,, Math. Methods Appl. Sci., 28 (2005), 709.  doi: 10.1002/mma.590.  Google Scholar

[17]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in, (2008), 103.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[18]

A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions,, Discrete Contin. Dynam. Systems, 28 (2010), 275.  doi: 10.3934/dcds.2010.28.275.  Google Scholar

[19]

G. Ruiz Goldstein, A. Miranville and G. Schimperna, A Cahn-Hilliard equation in a domain with non-permeable walls,, Phys. D, 240 (2011), 754.  doi: 10.1016/j.physd.2010.12.007.  Google Scholar

[1]

Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689

[2]

Maurizio Grasselli, Alain Miranville, Giulio Schimperna. The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 67-98. doi: 10.3934/dcds.2010.28.67

[3]

I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635

[4]

Rana D. Parshad, Juan B. Gutierrez. On the global attractor of the Trojan Y Chromosome model. Communications on Pure & Applied Analysis, 2011, 10 (1) : 339-359. doi: 10.3934/cpaa.2011.10.339

[5]

Alexey Cheskidov, Susan Friedlander, Nataša Pavlović. An inviscid dyadic model of turbulence: The global attractor. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 781-794. doi: 10.3934/dcds.2010.26.781

[6]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[7]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

[8]

Monica Conti, Stefania Gatti, Alain Miranville. Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 485-505. doi: 10.3934/dcdss.2012.5.485

[9]

Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159

[10]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[11]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[12]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

[13]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[14]

Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1

[15]

Yuncheng You. Global attractor of the Gray-Scott equations. Communications on Pure & Applied Analysis, 2008, 7 (4) : 947-970. doi: 10.3934/cpaa.2008.7.947

[16]

Yirong Jiang, Nanjing Huang, Zhouchao Wei. Existence of a global attractor for fractional differential hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019216

[17]

Gisèle Ruiz Goldstein, Alain Miranville. A Cahn-Hilliard-Gurtin model with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 387-400. doi: 10.3934/dcdss.2013.6.387

[18]

Davide Guidetti. Classical solutions to quasilinear parabolic problems with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 717-736. doi: 10.3934/dcdss.2016024

[19]

Boling Guo, Guoli Zhou. Finite dimensionality of global attractor for the solutions to 3D viscous primitive equations of large-scale moist atmosphere. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4305-4327. doi: 10.3934/dcdsb.2018160

[20]

Ciprian G. Gal, Alain Miranville. Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 113-147. doi: 10.3934/dcdss.2009.2.113

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (2)

[Back to Top]