January  2012, 11(1): 229-241. doi: 10.3934/cpaa.2012.11.229

Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations

1. 

Department of Mechanics and Mathematics, Franko Lviv National University, Lviv 79000, Ukraine

2. 

University of Heidelberg, Interdisciplinary Center for Scientific Computing (IWR), Institute of Applied Mathematics and BIOQUANT, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany

3. 

Department of Mathematics I, RWTH Aachen University, Wüllnerstr. 5b, 52056 Aachen, Germany

Received  March 2010 Revised  January 2011 Published  September 2011

In this paper we study pattern formation arising in a system of a single reaction-diffusion equation coupled with subsystem of ordinary differential equations, describing spatially-distributed growth of clonal populations of precancerous cells, whose proliferation is controlled by growth factors diffusing in the extracellular medium and binding to the cell surface. We extend the results on the existence of nonhomogenous stationary solutions obtained in [9] to a general Hill-type production function and full parameter set. Using spectral analysis and perturbation theory we derive conditions for the linearized stability of such spatial patterns.
Citation: Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229
References:
[1]

V. I. Arnold, "Ordinary Differential Equations,", MIT Press, (1978).   Google Scholar

[2]

K. I. Chueh, C. Conley and J. Smoller, Positively invariant regions for systems of nonlinear diffusion equations,, Ind. Univ. Math. J., 26 (1977), 373.  doi: 10.1512/iumj.1977.26.26029.  Google Scholar

[3]

A. Doelman, R. A. Gardner and T. J. Kaper, Stability analysis of singular patterns in the 1-D Gray-Scott model: A matched asymptotics approach,, Phys. D, 122 (1998), 1.  doi: 10.1016/S0167-2789(98)00180-8.  Google Scholar

[4]

A. Doelman, R. A. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations,, Indiana Univ. Math. J., 50 (2001), 443.  doi: 10.1512/iumj.2001.50.1873.  Google Scholar

[5]

D. Henry, "Geomertic Theory of Semilinear Parabolic Equations,", Springer-Verlag, (1981).   Google Scholar

[6]

T. Kato, "Perturbation Theory for Linear Operators,", Springer-Verlag, (1966).   Google Scholar

[7]

A. Marciniak-Czochra and M. Kimmel, Modelling of early lung cancer progression: Influence of growth factor production and cooperation between partially transformed cells,, Math. Mod. Meth. Appl. Sci., 17 (2007), 1693.  doi: 10.1142/S0218202507002443.  Google Scholar

[8]

A. Marciniak-Czochra and M. Kimmel, Dynamics of growth and signalling along linear and surface structures in very early tumours,, Comp. Math. Meth. Med., 7 (2006), 189.  doi: 10.1080/10273660600969091.  Google Scholar

[9]

A. Marciniak-Czochra and M. Kimmel, Reaction-diffusion model of early carcinogenesis: The effects of influx of mutated cells,, {Math. Model. Nat.Phenom.}, 3 (2008), 90.  doi: 10.1051/mmnp:2008043.  Google Scholar

[10]

J. D. Murray, "Mathematical Biology,", Springer-Verlag, (2003).   Google Scholar

[11]

P. K. Maini, In "On Growth and Form. Spatio-Temporal Pattern Formation in Biology,", John Wiley & Sons, (1999).   Google Scholar

[12]

F. Rothe, "Global Solutions of Reaction-Diffusion Systems,", Springer-Verlag, (1994).   Google Scholar

[13]

J. Smoller, "Shock-Waves and Reaction-Diffusion Equations,", Springer-Verlag, (1994).   Google Scholar

[14]

A. M. Turing, The chemical basis of morphogenesis,, {Phil. Trans. Roy. Soc. B}, 237 (1952), 37.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[15]

J. Wei, On the interior spike layer solutions for some singular perturbation problems,, { Proc. Royal Soc. Edinb.}, 128A (1998), 849.   Google Scholar

show all references

References:
[1]

V. I. Arnold, "Ordinary Differential Equations,", MIT Press, (1978).   Google Scholar

[2]

K. I. Chueh, C. Conley and J. Smoller, Positively invariant regions for systems of nonlinear diffusion equations,, Ind. Univ. Math. J., 26 (1977), 373.  doi: 10.1512/iumj.1977.26.26029.  Google Scholar

[3]

A. Doelman, R. A. Gardner and T. J. Kaper, Stability analysis of singular patterns in the 1-D Gray-Scott model: A matched asymptotics approach,, Phys. D, 122 (1998), 1.  doi: 10.1016/S0167-2789(98)00180-8.  Google Scholar

[4]

A. Doelman, R. A. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations,, Indiana Univ. Math. J., 50 (2001), 443.  doi: 10.1512/iumj.2001.50.1873.  Google Scholar

[5]

D. Henry, "Geomertic Theory of Semilinear Parabolic Equations,", Springer-Verlag, (1981).   Google Scholar

[6]

T. Kato, "Perturbation Theory for Linear Operators,", Springer-Verlag, (1966).   Google Scholar

[7]

A. Marciniak-Czochra and M. Kimmel, Modelling of early lung cancer progression: Influence of growth factor production and cooperation between partially transformed cells,, Math. Mod. Meth. Appl. Sci., 17 (2007), 1693.  doi: 10.1142/S0218202507002443.  Google Scholar

[8]

A. Marciniak-Czochra and M. Kimmel, Dynamics of growth and signalling along linear and surface structures in very early tumours,, Comp. Math. Meth. Med., 7 (2006), 189.  doi: 10.1080/10273660600969091.  Google Scholar

[9]

A. Marciniak-Czochra and M. Kimmel, Reaction-diffusion model of early carcinogenesis: The effects of influx of mutated cells,, {Math. Model. Nat.Phenom.}, 3 (2008), 90.  doi: 10.1051/mmnp:2008043.  Google Scholar

[10]

J. D. Murray, "Mathematical Biology,", Springer-Verlag, (2003).   Google Scholar

[11]

P. K. Maini, In "On Growth and Form. Spatio-Temporal Pattern Formation in Biology,", John Wiley & Sons, (1999).   Google Scholar

[12]

F. Rothe, "Global Solutions of Reaction-Diffusion Systems,", Springer-Verlag, (1994).   Google Scholar

[13]

J. Smoller, "Shock-Waves and Reaction-Diffusion Equations,", Springer-Verlag, (1994).   Google Scholar

[14]

A. M. Turing, The chemical basis of morphogenesis,, {Phil. Trans. Roy. Soc. B}, 237 (1952), 37.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[15]

J. Wei, On the interior spike layer solutions for some singular perturbation problems,, { Proc. Royal Soc. Edinb.}, 128A (1998), 849.   Google Scholar

[1]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[2]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[9]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[10]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[11]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[12]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[13]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[14]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[15]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[16]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[17]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[18]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[19]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[20]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (1)

[Back to Top]