November  2012, 11(6): 2393-2416. doi: 10.3934/cpaa.2012.11.2393

Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems

1. 

Dipartimento di Matematica, Politecnico di Milano, Via E. Bonardi, 9, I-20133 Milano

2. 

Laboratoire de Mathématiques et Applications UMR CNRS 6086, Université de Poitiers, Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil

Received  October 2010 Revised  December 2010 Published  April 2012

Following a result of Chill and Jendoubi in the continuous case, we study the asymptotic behavior of sequences $(U^n)_n$ in $R^d$ which satisfy the following backward Euler scheme:

$\varepsilon\frac{(U^{n+1}-2U^n+U^{n-1}}{\Delta t^2} +\frac{U^{n+1}-U^n}{\Delta t}+\nabla F(U^{n+1})=G^{n+1}, n\ge 0, $

where $\Delta t>0$ is the time step, $\varepsilon\ge 0$, $(G^{n+1})_n$ is a sequence in $ R^d$ which converges to $0$ in a suitable way, and $F\in C^{1,1}_{l o c}(R^d, R)$ is a function which satisfies a Łojasiewicz inequality. We prove that the above scheme is Lyapunov stable and that any bounded sequence $(U^n)_n$ which complies with it converges to a critical point of $F$ as $n$ tends to $\infty$. We also obtain convergence rates. We assume that $F$ is semiconvex for some constant $c_F\ge 0$ and that $1/\Delta t

Citation: Maurizio Grasselli, Morgan Pierre. Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2393-2416. doi: 10.3934/cpaa.2012.11.2393
References:
[1]

P.-A. Absil, R. Mahony and B. Andrews, Convergence of the iterates of descent methods for analytic cost functions,, SIAM J. Optim., 16 (2005), 531. doi: 10.1137/040605266. Google Scholar

[2]

H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features,, Math. Program., 116 (2009), 5. Google Scholar

[3]

H. Attouch, J. Bolte, P. Redont and A. Soubeyran, Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and {PDE's},, J. Convex Anal., 15 (2008), 485. Google Scholar

[4]

T. Bárta, R. Chill and E. Fašangová, Every ordinary differential equation with a strict Lyapunov function is a gradient system,, submitted., (). doi: 10.1007/s00605-011-0322-4. Google Scholar

[5]

I. Ben Hassen, Decay estimates to equilibrium for some asymptotically autonomous semilinear evolution equations,, Asymptot. Anal., 69 (2010), 31. Google Scholar

[6]

P. Bénilan, M. G. Crandall and A. Pazy, "Bonnes solutions'' d'un problème d'évolution semi-linéaire,, C. R. Acad. Sci. Paris S\'er. I Math., 306 (1988), 527. Google Scholar

[7]

J. Bolte, A. Daniilidis, O. Ley and L. Mazet, Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity,, Trans. Amer. Math. Soc., 362 (2010), 3319. Google Scholar

[8]

H. Brezis, "Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,'', North-Holland Publishing Co., (1973). Google Scholar

[9]

J. V. Chaparova, L. A. Peletier and S. A. Tersian, Existence and nonexistence of nontrivial solutions of semilinear fourth- and sixth-order differential equations,, Adv. Differential Equations, 8 (2003), 1237. Google Scholar

[10]

R. Chill and A. Haraux and M. A. Jendoubi, Applications of the Łojasiewicz-Simon gradient inequality to gradient-like evolution equations,, Anal. Appl. (Singap.), 7 (2009), 351. Google Scholar

[11]

R. Chill and M. A. Jendoubi, Convergence to steady states in asymptotically autonomous semilinear evolution equations,, Nonlinear Anal., 53 (2003), 1017. Google Scholar

[12]

K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals,, Phys. Rev. E, 70 (2004). Google Scholar

[13]

K. R. Elder, N. Provatas, J. Berry, P. Stefanovic and M. Grant, Phase-field crystal modeling and classical density functional theory of freezing,, Phys. Rev. B, 75 (2007). Google Scholar

[14]

H. Gajewski and J. A. Griepentrog, A descent method for the free energy of multicomponent systems,, Discrete Contin. Dyn. Syst., 15 (2006), 505. Google Scholar

[15]

P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.051110. Google Scholar

[16]

M. Grasselli, H. Petzeltová and G. Schimperna, Convergence to stationary solutions for a parabolic-hyperbolic phase-field system,, Commun. Pure Appl. Anal., 5 (2006), 827. Google Scholar

[17]

M. Grasselli, H. Wu and S. Zheng, Asymptotic behavior of a nonisothermal Ginzburg-Landau model,, Quart. Appl. Math., 66 (2008), 743. Google Scholar

[18]

A. Haraux, "Syst\`emes dynamiques dissipatifs et applications,'', Masson, (1991). Google Scholar

[19]

A. Haraux, Slow and fast decay of solutions to some second order evolution equations,, J. Anal. Math., 95 (2005), 297. doi: 10.1007/BF02791505. Google Scholar

[20]

A. Haraux and M. A. Jendoubi, Convergence of solutions of second-order gradient-like systems with analytic nonlinearities,, J. Differential Equations, 144 (1998), 313. doi: 10.1006/jdeq.1997.3393. Google Scholar

[21]

A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity,, Calc. Var. Partial Differential Equations, 9 (1999), 95. doi: 10.1007/s005260050133. Google Scholar

[22]

S.-Z. Huang, "Gradient Inequalities,'', American Mathematical Society, (2006). Google Scholar

[23]

S.-Z. Huang and P. Takáč, Convergence in gradient-like systems which are asymptotically autonomous and analytic,, Nonlinear Anal., 46 (2001), 675. doi: 10.1016/S0362-546X(00)00145-0. Google Scholar

[24]

M. A. Jendoubi, A simple unified approach to some convergence theorems of L. Simon,, J. Funct. Anal., 153 (1998), 187. doi: 10.1006/jfan.1997.3174. Google Scholar

[25]

M. A. Jendoubi, Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity,, J. Differential Equations, 144 (1998), 302. doi: 10.1006/jdeq.1997.3392. Google Scholar

[26]

S. Łojasiewicz, Une propriété topologique des sous-ensembles analytiques réels,, in, (1962). Google Scholar

[27]

S. Łojasiewicz, "Ensembles semi-analytiques,", I.H.E.S. Notes, (1965). Google Scholar

[28]

P.-E. Maingé, Asymptotic convergence of an inertial proximal method for unconstrained quasiconvex minimization,, J. Global Optim., 45 (2009), 631. doi: 10.1007/s10898-008-9388-5. Google Scholar

[29]

B. Merlet and M. Pierre, Convergence to equilibrium for the backward Euler scheme and applications,, Commun. Pure Appl. Anal., 9 (2010), 685. doi: 10.3934/cpaa.2010.9.685. Google Scholar

[30]

M. Polat, Global attractor for a modified Swift-Hohenberg equation,, Comput. Math. Appl., 57 (2009), 62. doi: 10.1016/j.camwa.2008.09.028. Google Scholar

[31]

L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems,, Ann. of Math., 118 (1983), 525. doi: 10.2307/2006981. Google Scholar

[32]

L. Song, Y. Zhang and T. Ma, Global attractor of a modified Swift-Hohenberg equation in $H^k$ spaces,, Nonlinear Anal., 72 (2010), 183. doi: 10.1016/j.na.2009.06.103. Google Scholar

[33]

A. M. Stuart and A. R. Humphries, "Dynamical Systems and Numerical Analysis,'', Cambridge University Press, (1996). Google Scholar

[34]

J. B. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability,, Phys. Rev. A, 15 (1977), 319. doi: 10.1103/PhysRevA.15.319. Google Scholar

[35]

S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent,, Commun. Pure Appl. Anal., 3 (2004), 921. doi: 10.3934/cpaa.2004.3.921. Google Scholar

[36]

S. Zelik, Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities,, Discrete Contin. Dyn. Syst., 11 (2004), 351. doi: 10.3934/dcds.2004.11.351. Google Scholar

show all references

References:
[1]

P.-A. Absil, R. Mahony and B. Andrews, Convergence of the iterates of descent methods for analytic cost functions,, SIAM J. Optim., 16 (2005), 531. doi: 10.1137/040605266. Google Scholar

[2]

H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features,, Math. Program., 116 (2009), 5. Google Scholar

[3]

H. Attouch, J. Bolte, P. Redont and A. Soubeyran, Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and {PDE's},, J. Convex Anal., 15 (2008), 485. Google Scholar

[4]

T. Bárta, R. Chill and E. Fašangová, Every ordinary differential equation with a strict Lyapunov function is a gradient system,, submitted., (). doi: 10.1007/s00605-011-0322-4. Google Scholar

[5]

I. Ben Hassen, Decay estimates to equilibrium for some asymptotically autonomous semilinear evolution equations,, Asymptot. Anal., 69 (2010), 31. Google Scholar

[6]

P. Bénilan, M. G. Crandall and A. Pazy, "Bonnes solutions'' d'un problème d'évolution semi-linéaire,, C. R. Acad. Sci. Paris S\'er. I Math., 306 (1988), 527. Google Scholar

[7]

J. Bolte, A. Daniilidis, O. Ley and L. Mazet, Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity,, Trans. Amer. Math. Soc., 362 (2010), 3319. Google Scholar

[8]

H. Brezis, "Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,'', North-Holland Publishing Co., (1973). Google Scholar

[9]

J. V. Chaparova, L. A. Peletier and S. A. Tersian, Existence and nonexistence of nontrivial solutions of semilinear fourth- and sixth-order differential equations,, Adv. Differential Equations, 8 (2003), 1237. Google Scholar

[10]

R. Chill and A. Haraux and M. A. Jendoubi, Applications of the Łojasiewicz-Simon gradient inequality to gradient-like evolution equations,, Anal. Appl. (Singap.), 7 (2009), 351. Google Scholar

[11]

R. Chill and M. A. Jendoubi, Convergence to steady states in asymptotically autonomous semilinear evolution equations,, Nonlinear Anal., 53 (2003), 1017. Google Scholar

[12]

K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals,, Phys. Rev. E, 70 (2004). Google Scholar

[13]

K. R. Elder, N. Provatas, J. Berry, P. Stefanovic and M. Grant, Phase-field crystal modeling and classical density functional theory of freezing,, Phys. Rev. B, 75 (2007). Google Scholar

[14]

H. Gajewski and J. A. Griepentrog, A descent method for the free energy of multicomponent systems,, Discrete Contin. Dyn. Syst., 15 (2006), 505. Google Scholar

[15]

P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.051110. Google Scholar

[16]

M. Grasselli, H. Petzeltová and G. Schimperna, Convergence to stationary solutions for a parabolic-hyperbolic phase-field system,, Commun. Pure Appl. Anal., 5 (2006), 827. Google Scholar

[17]

M. Grasselli, H. Wu and S. Zheng, Asymptotic behavior of a nonisothermal Ginzburg-Landau model,, Quart. Appl. Math., 66 (2008), 743. Google Scholar

[18]

A. Haraux, "Syst\`emes dynamiques dissipatifs et applications,'', Masson, (1991). Google Scholar

[19]

A. Haraux, Slow and fast decay of solutions to some second order evolution equations,, J. Anal. Math., 95 (2005), 297. doi: 10.1007/BF02791505. Google Scholar

[20]

A. Haraux and M. A. Jendoubi, Convergence of solutions of second-order gradient-like systems with analytic nonlinearities,, J. Differential Equations, 144 (1998), 313. doi: 10.1006/jdeq.1997.3393. Google Scholar

[21]

A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity,, Calc. Var. Partial Differential Equations, 9 (1999), 95. doi: 10.1007/s005260050133. Google Scholar

[22]

S.-Z. Huang, "Gradient Inequalities,'', American Mathematical Society, (2006). Google Scholar

[23]

S.-Z. Huang and P. Takáč, Convergence in gradient-like systems which are asymptotically autonomous and analytic,, Nonlinear Anal., 46 (2001), 675. doi: 10.1016/S0362-546X(00)00145-0. Google Scholar

[24]

M. A. Jendoubi, A simple unified approach to some convergence theorems of L. Simon,, J. Funct. Anal., 153 (1998), 187. doi: 10.1006/jfan.1997.3174. Google Scholar

[25]

M. A. Jendoubi, Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity,, J. Differential Equations, 144 (1998), 302. doi: 10.1006/jdeq.1997.3392. Google Scholar

[26]

S. Łojasiewicz, Une propriété topologique des sous-ensembles analytiques réels,, in, (1962). Google Scholar

[27]

S. Łojasiewicz, "Ensembles semi-analytiques,", I.H.E.S. Notes, (1965). Google Scholar

[28]

P.-E. Maingé, Asymptotic convergence of an inertial proximal method for unconstrained quasiconvex minimization,, J. Global Optim., 45 (2009), 631. doi: 10.1007/s10898-008-9388-5. Google Scholar

[29]

B. Merlet and M. Pierre, Convergence to equilibrium for the backward Euler scheme and applications,, Commun. Pure Appl. Anal., 9 (2010), 685. doi: 10.3934/cpaa.2010.9.685. Google Scholar

[30]

M. Polat, Global attractor for a modified Swift-Hohenberg equation,, Comput. Math. Appl., 57 (2009), 62. doi: 10.1016/j.camwa.2008.09.028. Google Scholar

[31]

L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems,, Ann. of Math., 118 (1983), 525. doi: 10.2307/2006981. Google Scholar

[32]

L. Song, Y. Zhang and T. Ma, Global attractor of a modified Swift-Hohenberg equation in $H^k$ spaces,, Nonlinear Anal., 72 (2010), 183. doi: 10.1016/j.na.2009.06.103. Google Scholar

[33]

A. M. Stuart and A. R. Humphries, "Dynamical Systems and Numerical Analysis,'', Cambridge University Press, (1996). Google Scholar

[34]

J. B. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability,, Phys. Rev. A, 15 (1977), 319. doi: 10.1103/PhysRevA.15.319. Google Scholar

[35]

S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent,, Commun. Pure Appl. Anal., 3 (2004), 921. doi: 10.3934/cpaa.2004.3.921. Google Scholar

[36]

S. Zelik, Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities,, Discrete Contin. Dyn. Syst., 11 (2004), 351. doi: 10.3934/dcds.2004.11.351. Google Scholar

[1]

Alain Haraux. Some applications of the Łojasiewicz gradient inequality. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2417-2427. doi: 10.3934/cpaa.2012.11.2417

[2]

Peter Takáč. Stabilization of positive solutions for analytic gradient-like systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 947-973. doi: 10.3934/dcds.2000.6.947

[3]

Zhuchun Li, Yi Liu, Xiaoping Xue. Convergence and stability of generalized gradient systems by Łojasiewicz inequality with application in continuum Kuramoto model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 345-367. doi: 10.3934/dcds.2019014

[4]

Xuewei Ju, Desheng Li, Jinqiao Duan. Forward attraction of pullback attractors and synchronizing behavior of gradient-like systems with nonautonomous perturbations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1175-1197. doi: 10.3934/dcdsb.2019011

[5]

Yejuan Wang, Tomás Caraballo. Morse decomposition for gradient-like multi-valued autonomous and nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-24. doi: 10.3934/dcdss.2020092

[6]

Ming-Chia Li. Stability of parameterized Morse-Smale gradient-like flows. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1073-1077. doi: 10.3934/dcds.2003.9.1073

[7]

Benoît Merlet, Morgan Pierre. Convergence to equilibrium for the backward Euler scheme and applications. Communications on Pure & Applied Analysis, 2010, 9 (3) : 685-702. doi: 10.3934/cpaa.2010.9.685

[8]

Lev M. Lerman, Elena V. Gubina. Nonautonomous gradient-like vector fields on the circle: Classification, structural stability and autonomization. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-27. doi: 10.3934/dcdss.2020076

[9]

Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations & Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017

[10]

Igor Griva, Roman A. Polyak. Proximal point nonlinear rescaling method for convex optimization. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 283-299. doi: 10.3934/naco.2011.1.283

[11]

Bertram Düring, Daniel Matthes, Josipa Pina Milišić. A gradient flow scheme for nonlinear fourth order equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 935-959. doi: 10.3934/dcdsb.2010.14.935

[12]

Janosch Rieger. The Euler scheme for state constrained ordinary differential inclusions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2729-2744. doi: 10.3934/dcdsb.2016070

[13]

Sanming Liu, Zhijie Wang, Chongyang Liu. On convergence analysis of dual proximal-gradient methods with approximate gradient for a class of nonsmooth convex minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 389-402. doi: 10.3934/jimo.2016.12.389

[14]

Laetitia Paoli. A proximal-like algorithm for vibro-impact problems with a non-smooth set of constraints. Conference Publications, 2011, 2011 (Special) : 1186-1195. doi: 10.3934/proc.2011.2011.1186

[15]

Dumitru Motreanu, Calogero Vetro, Francesca Vetro. Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 309-321. doi: 10.3934/dcdss.2018017

[16]

Bin Li, Hai Huyen Dam, Antonio Cantoni. A low-complexity zero-forcing Beamformer design for multiuser MIMO systems via a dual gradient method. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 297-304. doi: 10.3934/naco.2016012

[17]

Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic & Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033

[18]

Yanqing Wang. A semidiscrete Galerkin scheme for backward stochastic parabolic differential equations. Mathematical Control & Related Fields, 2016, 6 (3) : 489-515. doi: 10.3934/mcrf.2016013

[19]

Weidong Zhao, Jinlei Wang, Shige Peng. Error estimates of the $\theta$-scheme for backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 905-924. doi: 10.3934/dcdsb.2009.12.905

[20]

Weidong Zhao, Yang Li, Guannan Zhang. A generalized $\theta$-scheme for solving backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1585-1603. doi: 10.3934/dcdsb.2012.17.1585

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]