November  2012, 11(6): 2429-2443. doi: 10.3934/cpaa.2012.11.2429

On some spectral problems arising in dynamic populations

1. 

Institut Elie Cartan, Nancy Université - CNRS, B.P. 239, 54 506 Vandoeuvre-les-Nancy, France

2. 

Institut Elie Cartan, Nancy Université - CNRS, B.P. 239, 54 506 Vandoeuvre-lès-Nancy, France, France

Received  February 2011 Revised  February 2011 Published  April 2012

We study a spectral problem related to a reaction-diffusion model where preys and predators do not live on the same area. We are interested in the optimal zone where a control should take place. First, we prove existence of an optimal domain in a natural class. Then, it seems plausible that the optimal domain is localized in the intersection of the living areas of the two species. We prove this fact in one dimension for small sized domains.
Citation: Antoine Henrot, El-Haj Laamri, Didier Schmitt. On some spectral problems arising in dynamic populations. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2429-2443. doi: 10.3934/cpaa.2012.11.2429
References:
[1]

S. Anita, W. E. Fitzgibbon and M. Langlais, Global existence and internal stabilization for a reaction-diffusion systems posed on non coincident spatial domains,, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 805.  doi: 10.3934/dcdsb.2009.11.805.  Google Scholar

[2]

H. Brézis, "Analyse Fonctionnelle,", Masson, (1983).   Google Scholar

[3]

G. Degla, An overview of semi-continuity results on the spectral radius and positivity,, J. Math. Anal. Appl., 338 (2008), 101.  doi: 10.1016/j.jmaa.2007.05.011.  Google Scholar

[4]

A. Ducrot, V. Guyonne and M. Langlais, Some Remarks on the qualitative properties of solutions to a predator-prey model posed on non coincident spatial domains,, Discrete Contin. Dyn. Syst., 4 (2011), 67.  doi: 10.3934/dcdss.2011.4.67.  Google Scholar

[5]

H. Egnell, Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14 (1987), 1.   Google Scholar

[6]

W. E. Fitzgibbon and M. Langlais, Simple models for the transmission of microparasites between host populations living on noncoincident spatial domains,, In, 1936 (2008), 115.  doi: 10.1007/978-3-540-78273-5_3.  Google Scholar

[7]

A. Henrot, "Extremum Problems for Eigenvalues of Elliptic Operators,", Frontiers in Mathematics, (2006).  doi: 10.1007/3-7643-7706-2.  Google Scholar

[8]

A. Henrot and M. Pierre, "Variation et optimisation de formes,", Math\'ematiques et Applications, 48 (2005).  doi: 10.1007/3-540-37689-5.  Google Scholar

[9]

T. Kato, "Perturbation Theory for Linear Operators,", \textbf{132}, 132 (1966).  doi: 10.1007/978-3-642-66282-9.  Google Scholar

[10]

M. Langlais, Some mathematical reaction-diffusion problems arising in population dynamics and posed on non coincident spatial domains,, Workshop, (2009), 22.   Google Scholar

show all references

References:
[1]

S. Anita, W. E. Fitzgibbon and M. Langlais, Global existence and internal stabilization for a reaction-diffusion systems posed on non coincident spatial domains,, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 805.  doi: 10.3934/dcdsb.2009.11.805.  Google Scholar

[2]

H. Brézis, "Analyse Fonctionnelle,", Masson, (1983).   Google Scholar

[3]

G. Degla, An overview of semi-continuity results on the spectral radius and positivity,, J. Math. Anal. Appl., 338 (2008), 101.  doi: 10.1016/j.jmaa.2007.05.011.  Google Scholar

[4]

A. Ducrot, V. Guyonne and M. Langlais, Some Remarks on the qualitative properties of solutions to a predator-prey model posed on non coincident spatial domains,, Discrete Contin. Dyn. Syst., 4 (2011), 67.  doi: 10.3934/dcdss.2011.4.67.  Google Scholar

[5]

H. Egnell, Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14 (1987), 1.   Google Scholar

[6]

W. E. Fitzgibbon and M. Langlais, Simple models for the transmission of microparasites between host populations living on noncoincident spatial domains,, In, 1936 (2008), 115.  doi: 10.1007/978-3-540-78273-5_3.  Google Scholar

[7]

A. Henrot, "Extremum Problems for Eigenvalues of Elliptic Operators,", Frontiers in Mathematics, (2006).  doi: 10.1007/3-7643-7706-2.  Google Scholar

[8]

A. Henrot and M. Pierre, "Variation et optimisation de formes,", Math\'ematiques et Applications, 48 (2005).  doi: 10.1007/3-540-37689-5.  Google Scholar

[9]

T. Kato, "Perturbation Theory for Linear Operators,", \textbf{132}, 132 (1966).  doi: 10.1007/978-3-642-66282-9.  Google Scholar

[10]

M. Langlais, Some mathematical reaction-diffusion problems arising in population dynamics and posed on non coincident spatial domains,, Workshop, (2009), 22.   Google Scholar

[1]

Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162

[2]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148

[3]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[4]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[5]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[6]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[7]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[8]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[9]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[10]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[11]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[12]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[13]

Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128

[14]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[15]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[16]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[17]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[18]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[19]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[20]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]