November  2012, 11(6): 2445-2472. doi: 10.3934/cpaa.2012.11.2445

The rate of attraction of super-critical waves in a Fisher-KPP type model with shear flow

1. 

Institut de Mathématiques (UMR CNRS 5219), Université Paul Sabatier, 31062 Toulouse Cedex 4, France

2. 

Laboratoire MIP, Université Paul Sabatier, 31062 Toulouse Cedex 9

Received  October 2010 Revised  June 2011 Published  April 2012

We consider in this paper the thermo-diffusive model for flame propagation, which is a reaction-diffusion equation of the KPP (Kolmogorov, Petrovskii, Piskunov) type, posed on an infinite cylinder. Such a model has a family of travelling waves of constant speed, larger than a critical speed $c_*$. The family of all supercritical waves attract a large class of initial data, and we try to understand how. We describe in this paper the fate of an initial datum trapped between two supercritical waves of the same velocity: the solution will converge to a whole set of translates of the same wave, and we identify the convergence dynamics as that of an effective drift, around which an effective diffusion process occurs.
Citation: Patrick Martinez, Jean-Michel Roquejoffre. The rate of attraction of super-critical waves in a Fisher-KPP type model with shear flow. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2445-2472. doi: 10.3934/cpaa.2012.11.2445
References:
[1]

B. Audoly, H. Berestycki and Y. Pomeau, Réaction-diffusion en écoulement rapide,, C. R. Acad. Sci.Paris, 328 (2000), 255.   Google Scholar

[2]

M. Bages, "Équations de réaction-diffusion de type KPP: ondes pulsatoires, dynamique non triviale et applications,", Ph.D thesis, (2007).   Google Scholar

[3]

M. Bages, P. Martinez and J.-M. Roquejoffre, Dynamique en grand temps pour une classe d'équations de type KPP en milieu périodique,, C.R. Acad. Sci. Paris, 346 (2008), 1051.   Google Scholar

[4]

M. Bages, P. Martinez and J.-M. Roquejoffre, How travelling waves attract solutions of KPP-type equations,, Trans A.M.S., ().   Google Scholar

[5]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations,, In, 446 (): 101.   Google Scholar

[6]

F. Benkhaldoun and B. Larrouturou, Numerical analysis of the two-dimensional thermodiffusive model for flame propagation,, RAIRO Mod\`el. Math. Anal. Num\'er., 22 (1988), 535.   Google Scholar

[7]

H. Berestycki and B. Larrouturou, Quelques aspects mathématiques de la propagation des flammes prémélangées,, Nonlinear Partial Differential Equations and their Applications, (1991), 65.   Google Scholar

[8]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders,, Ann. Inst. H. Poincar\'e, 9 (1992), 497.   Google Scholar

[9]

M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves,, Memoirs of the AMS, 44 (1983).   Google Scholar

[10]

P. Collet and J. P. Eckmann, Space-time behaviour in problems of hydrodynamic type: a case study,, Nonlinearity, 5 (1992), 1265.  doi: 10.1088/0951-7715/5/6/004.  Google Scholar

[11]

U. Ebert and W. van Saarloos, Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts,, Physica D, 146 (2000), 1.  doi: 10.1016/S0167-2789(00)00068-3.  Google Scholar

[12]

A. Fannjiang and G. Papanicolaou, Convection Enhanced Diffusion for Periodic Flows,, SIAM J. Appl. Math., 54 (1994), 333.  doi: 10.1137/S0036139992236785.  Google Scholar

[13]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in $\RR^N$,, Arch. Ration. Mech. Anal., 157 (2001), 91.  doi: 10.1007/PL00004238.  Google Scholar

[14]

F. Hamel and L. Roques, Uniqueness and stability of monostable pulsating travelling fronts,, J. European Math. Soc, ().   Google Scholar

[15]

F. Hamel and L. Ryzhik, Non-adiabatic KPP fronts with an arbitrary Lewis number,, Nonlinearity, 18 (2005), 2881.  doi: 10.1088/0951-7715/18/6/024.  Google Scholar

[16]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 ().   Google Scholar

[17]

A. Kiselev and L. Ryzhik, Enhancement of the traveling front speeds in reaction-diffusion equations with advection,, Ann. de l'Inst. Henri Poincar\'e, 18 (2001), 309.   Google Scholar

[18]

A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem,, Bjul. Moskowskogo Gos. Univ., 17 (1937), 1.   Google Scholar

[19]

N. Maman and B. Larrouturou, Dynamical mesh adaption for two-dimensional reactive flow simulations,, in, (1991), 13.   Google Scholar

[20]

P. Martinez and J.-M. Roquejoffre, Convergence to critical waves in KPP equations,, in preparation., ().   Google Scholar

[21]

J.-F. Mallordy and J.-M. Roquejoffre, A parabolic equation of the KPP type in higher dimensions,, SIAM J. Math. Anal., 26 (1995), 1.  doi: 10.1137/S0036141093246105.  Google Scholar

[22]

J. R. Norris, Long-time behaviour of heat flow : global estimates and exact asymptotics,, Arch. Rational Mech. Anal., 140 (1997), 161.  doi: 10.1007/s002050050063.  Google Scholar

[23]

J. Ortega and E. Zuazua, Large time behaviour in RN for linear parabolic equations with periodic coefficients,, Asymptotic Analysis, 22 (2000), 51.   Google Scholar

[24]

J.-M. Roquejoffre, Eventual monotonicity and convergence to travelling waves for semi-linear parabolic equations in cylinders,, Ann. IHP, 14 (1997), 499.   Google Scholar

[25]

K. Uchiyama, The behaviour of solutions of some nonlinear diffusion equations for large time,, J. Math. Kyoto Univ., 18 (1978), 453.   Google Scholar

[26]

J.-L. Vazqueza and E. Zuazua, Complexity of large time behaviour of evolution equations with bounded data,, Chinese Annals of Mathematics, 23 (2002), 293.   Google Scholar

show all references

References:
[1]

B. Audoly, H. Berestycki and Y. Pomeau, Réaction-diffusion en écoulement rapide,, C. R. Acad. Sci.Paris, 328 (2000), 255.   Google Scholar

[2]

M. Bages, "Équations de réaction-diffusion de type KPP: ondes pulsatoires, dynamique non triviale et applications,", Ph.D thesis, (2007).   Google Scholar

[3]

M. Bages, P. Martinez and J.-M. Roquejoffre, Dynamique en grand temps pour une classe d'équations de type KPP en milieu périodique,, C.R. Acad. Sci. Paris, 346 (2008), 1051.   Google Scholar

[4]

M. Bages, P. Martinez and J.-M. Roquejoffre, How travelling waves attract solutions of KPP-type equations,, Trans A.M.S., ().   Google Scholar

[5]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations,, In, 446 (): 101.   Google Scholar

[6]

F. Benkhaldoun and B. Larrouturou, Numerical analysis of the two-dimensional thermodiffusive model for flame propagation,, RAIRO Mod\`el. Math. Anal. Num\'er., 22 (1988), 535.   Google Scholar

[7]

H. Berestycki and B. Larrouturou, Quelques aspects mathématiques de la propagation des flammes prémélangées,, Nonlinear Partial Differential Equations and their Applications, (1991), 65.   Google Scholar

[8]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders,, Ann. Inst. H. Poincar\'e, 9 (1992), 497.   Google Scholar

[9]

M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves,, Memoirs of the AMS, 44 (1983).   Google Scholar

[10]

P. Collet and J. P. Eckmann, Space-time behaviour in problems of hydrodynamic type: a case study,, Nonlinearity, 5 (1992), 1265.  doi: 10.1088/0951-7715/5/6/004.  Google Scholar

[11]

U. Ebert and W. van Saarloos, Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts,, Physica D, 146 (2000), 1.  doi: 10.1016/S0167-2789(00)00068-3.  Google Scholar

[12]

A. Fannjiang and G. Papanicolaou, Convection Enhanced Diffusion for Periodic Flows,, SIAM J. Appl. Math., 54 (1994), 333.  doi: 10.1137/S0036139992236785.  Google Scholar

[13]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in $\RR^N$,, Arch. Ration. Mech. Anal., 157 (2001), 91.  doi: 10.1007/PL00004238.  Google Scholar

[14]

F. Hamel and L. Roques, Uniqueness and stability of monostable pulsating travelling fronts,, J. European Math. Soc, ().   Google Scholar

[15]

F. Hamel and L. Ryzhik, Non-adiabatic KPP fronts with an arbitrary Lewis number,, Nonlinearity, 18 (2005), 2881.  doi: 10.1088/0951-7715/18/6/024.  Google Scholar

[16]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 ().   Google Scholar

[17]

A. Kiselev and L. Ryzhik, Enhancement of the traveling front speeds in reaction-diffusion equations with advection,, Ann. de l'Inst. Henri Poincar\'e, 18 (2001), 309.   Google Scholar

[18]

A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem,, Bjul. Moskowskogo Gos. Univ., 17 (1937), 1.   Google Scholar

[19]

N. Maman and B. Larrouturou, Dynamical mesh adaption for two-dimensional reactive flow simulations,, in, (1991), 13.   Google Scholar

[20]

P. Martinez and J.-M. Roquejoffre, Convergence to critical waves in KPP equations,, in preparation., ().   Google Scholar

[21]

J.-F. Mallordy and J.-M. Roquejoffre, A parabolic equation of the KPP type in higher dimensions,, SIAM J. Math. Anal., 26 (1995), 1.  doi: 10.1137/S0036141093246105.  Google Scholar

[22]

J. R. Norris, Long-time behaviour of heat flow : global estimates and exact asymptotics,, Arch. Rational Mech. Anal., 140 (1997), 161.  doi: 10.1007/s002050050063.  Google Scholar

[23]

J. Ortega and E. Zuazua, Large time behaviour in RN for linear parabolic equations with periodic coefficients,, Asymptotic Analysis, 22 (2000), 51.   Google Scholar

[24]

J.-M. Roquejoffre, Eventual monotonicity and convergence to travelling waves for semi-linear parabolic equations in cylinders,, Ann. IHP, 14 (1997), 499.   Google Scholar

[25]

K. Uchiyama, The behaviour of solutions of some nonlinear diffusion equations for large time,, J. Math. Kyoto Univ., 18 (1978), 453.   Google Scholar

[26]

J.-L. Vazqueza and E. Zuazua, Complexity of large time behaviour of evolution equations with bounded data,, Chinese Annals of Mathematics, 23 (2002), 293.   Google Scholar

[1]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[2]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[3]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[4]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[5]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[6]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[7]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[8]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[9]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[10]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[11]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[12]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[13]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[14]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[15]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[16]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[17]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[18]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[19]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[20]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]