November  2012, 11(6): 2473-2485. doi: 10.3934/cpaa.2012.11.2473

On dual dynamic programming in shape control

1. 

University of Lodz, Faculty of Math & Computer Sciences, Banacha 22, 90-238 Lodz, Poland

2. 

Institut Elie Cartan, UMR 7502 (Nancy Université, CNRS, INRIA), Université Henri Poincaré Nancy I, B.P. 239, 54506 Vandoeuvre-lès-Nancy, Cedex

Received  June 2010 Revised  November 2010 Published  April 2012

We propose a new method for analysis of shape optimization problems. The framework of dual dynamic programming is introduced for a solution of the problems. The shape optimization problem for a linear elliptic boundary value problem is formulated in terms of characteristic functions which define the suport of control. The optimal solution of such a problem can be obtained by solving the sufficient optimality conditions.
Citation: Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473
References:
[1]

E. Bednarczuk, M. Pierre, E. Rouy and J. Sokolowski, Tangent sets in some functional spaces,, Nonlinear Anal., 42 (2000), 871.  doi: 10.1016/S0362-546X(99)00134-0.  Google Scholar

[2]

R. Bellman, "Dynamic Programming,", Princeton University Press, (1957).  doi: 10.1126/science.153.3731.34.  Google Scholar

[3]

M. C. Delfour and J. P. Zolesio, "Shapes and Geometries - Analysis, Differential Calculus and Optimization,", Advances in Design and Control, (2001).   Google Scholar

[4]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control,", Springer Verlag, (1975).   Google Scholar

[5]

E. Galewska and A. Nowakowski, A dual dynamic programming for multidimensional elliptic optimal control problems,, Numer. Funct. Anal. Optim., 27 (2006), 279.  doi: 10.1080/01630560600698160.  Google Scholar

[6]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer - Verlag, (2001).   Google Scholar

[7]

P. Hebrard and A. Henrot, Spillover phenomenon in the optimal locations of actuators,, SIAM J. Control Optim., 44 (): 349.  doi: 10.1016/S0167-6911(02)00265-7.  Google Scholar

[8]

P. Hebrard and A. Henrot, Optimal shape and position of the actuators for the stabilization of a string,, Systems and Control Letters, 48 (2003), 199.   Google Scholar

[9]

A. Henrot and M. Pierre, "Variation et optimisation de formes: une analyse g'eométrique,", (French) Math\'ematiques et Applications 48, (2005).   Google Scholar

[10]

R. V. Kohn and G. Strang, Optimal design and relaxation of variational problems,, Comm. Pure Appl. Math., 39 (1986), 113.  doi: 10.1002/cpa.3160390107.  Google Scholar

[11]

F. Murat and L. Tartar, "Calcul des Variations et Homogénéisation, Les Méthodes de Homogénéisation: Théorie et Applications en Physique,", (French) Coll. Dir. Etudes et Recherches EDF, (1985), 319.   Google Scholar

[12]

A. Münch, Optimal location of the support of the control for the 1-D wave equation: Numerical investigations,, Comput. Optim. Appl., 42 (2009), 443.  doi: 10.1007/s10589-007-9133-x.  Google Scholar

[13]

A. Münch, Optimal design of the support of the control for the 2-D wave equation: a numerical method,, Int. J. Numer. Anal. Model., 5 (2008), 331.   Google Scholar

[14]

A. Nowakowski, The dual dynamic programming,, Proceedings of the American Mathematical Society, 116 (1992), 1089.  doi: 10.1090/S0002-9939-1992-1102860-3.  Google Scholar

[15]

A. Nowakowski, Sufficient optimality conditions for Dirichlet boundary control of wave equations,, SIAM J. Control Optim., 47 (2008), 92.  doi: 10.1137/050644008.  Google Scholar

[16]

F. Periago, Optimal shape and position of the support for the internal exact control of a string,, Systems & Control Letters, 58 (2009), 136.  doi: 10.1016/j.sysconle.2008.08.007.  Google Scholar

[17]

J. Sokolowski and J. P. Zolesio, "Introduction to Shape Optimization,", Springer - Verlag, (1992).  doi: 10.1007/978-3-642-58106-9.  Google Scholar

[18]

J. Sokolowski and A. Zochowski, Topological derivative for elliptic problems,, Inverse problems, 15 (1999), 123.  doi: 10.1088/0266-5611/15/1/016.  Google Scholar

show all references

References:
[1]

E. Bednarczuk, M. Pierre, E. Rouy and J. Sokolowski, Tangent sets in some functional spaces,, Nonlinear Anal., 42 (2000), 871.  doi: 10.1016/S0362-546X(99)00134-0.  Google Scholar

[2]

R. Bellman, "Dynamic Programming,", Princeton University Press, (1957).  doi: 10.1126/science.153.3731.34.  Google Scholar

[3]

M. C. Delfour and J. P. Zolesio, "Shapes and Geometries - Analysis, Differential Calculus and Optimization,", Advances in Design and Control, (2001).   Google Scholar

[4]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control,", Springer Verlag, (1975).   Google Scholar

[5]

E. Galewska and A. Nowakowski, A dual dynamic programming for multidimensional elliptic optimal control problems,, Numer. Funct. Anal. Optim., 27 (2006), 279.  doi: 10.1080/01630560600698160.  Google Scholar

[6]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer - Verlag, (2001).   Google Scholar

[7]

P. Hebrard and A. Henrot, Spillover phenomenon in the optimal locations of actuators,, SIAM J. Control Optim., 44 (): 349.  doi: 10.1016/S0167-6911(02)00265-7.  Google Scholar

[8]

P. Hebrard and A. Henrot, Optimal shape and position of the actuators for the stabilization of a string,, Systems and Control Letters, 48 (2003), 199.   Google Scholar

[9]

A. Henrot and M. Pierre, "Variation et optimisation de formes: une analyse g'eométrique,", (French) Math\'ematiques et Applications 48, (2005).   Google Scholar

[10]

R. V. Kohn and G. Strang, Optimal design and relaxation of variational problems,, Comm. Pure Appl. Math., 39 (1986), 113.  doi: 10.1002/cpa.3160390107.  Google Scholar

[11]

F. Murat and L. Tartar, "Calcul des Variations et Homogénéisation, Les Méthodes de Homogénéisation: Théorie et Applications en Physique,", (French) Coll. Dir. Etudes et Recherches EDF, (1985), 319.   Google Scholar

[12]

A. Münch, Optimal location of the support of the control for the 1-D wave equation: Numerical investigations,, Comput. Optim. Appl., 42 (2009), 443.  doi: 10.1007/s10589-007-9133-x.  Google Scholar

[13]

A. Münch, Optimal design of the support of the control for the 2-D wave equation: a numerical method,, Int. J. Numer. Anal. Model., 5 (2008), 331.   Google Scholar

[14]

A. Nowakowski, The dual dynamic programming,, Proceedings of the American Mathematical Society, 116 (1992), 1089.  doi: 10.1090/S0002-9939-1992-1102860-3.  Google Scholar

[15]

A. Nowakowski, Sufficient optimality conditions for Dirichlet boundary control of wave equations,, SIAM J. Control Optim., 47 (2008), 92.  doi: 10.1137/050644008.  Google Scholar

[16]

F. Periago, Optimal shape and position of the support for the internal exact control of a string,, Systems & Control Letters, 58 (2009), 136.  doi: 10.1016/j.sysconle.2008.08.007.  Google Scholar

[17]

J. Sokolowski and J. P. Zolesio, "Introduction to Shape Optimization,", Springer - Verlag, (1992).  doi: 10.1007/978-3-642-58106-9.  Google Scholar

[18]

J. Sokolowski and A. Zochowski, Topological derivative for elliptic problems,, Inverse problems, 15 (1999), 123.  doi: 10.1088/0266-5611/15/1/016.  Google Scholar

[1]

Ana P. Lemos-Paião, Cristiana J. Silva, Delfim F. M. Torres. A sufficient optimality condition for delayed state-linear optimal control problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2293-2313. doi: 10.3934/dcdsb.2019096

[2]

RazIye Mert, A. Zafer. A necessary and sufficient condition for oscillation of second order sublinear delay dynamic equations. Conference Publications, 2011, 2011 (Special) : 1061-1067. doi: 10.3934/proc.2011.2011.1061

[3]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[4]

Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657

[5]

A. C. Eberhard, C.E.M. Pearce. A sufficient optimality condition for nonregular problems via a nonlinear Lagrangian. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 301-331. doi: 10.3934/naco.2012.2.301

[6]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

[7]

Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001

[8]

Miniak-Górecka Alicja, Nowakowski Andrzej. Sufficient optimality conditions for a class of epidemic problems with control on the boundary. Mathematical Biosciences & Engineering, 2017, 14 (1) : 263-275. doi: 10.3934/mbe.2017017

[9]

Lihua Li, Yan Gao, Hongjie Wang. Second order sufficient optimality conditions for hybrid control problems with state jump. Journal of Industrial & Management Optimization, 2015, 11 (1) : 329-343. doi: 10.3934/jimo.2015.11.329

[10]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[11]

Urszula Ledzewicz, Stanislaw Walczak. Optimal control of systems governed by some elliptic equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 279-290. doi: 10.3934/dcds.1999.5.279

[12]

Ram U. Verma. General parametric sufficient optimality conditions for multiple objective fractional subset programming relating to generalized $(\rho,\eta,A)$ -invexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 333-339. doi: 10.3934/naco.2011.1.333

[13]

Giuseppe Buttazzo, Faustino Maestre. Optimal shape for elliptic problems with random perturbations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1115-1128. doi: 10.3934/dcds.2011.31.1115

[14]

Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations & Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495

[15]

M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070

[16]

J.-P. Raymond, F. Tröltzsch. Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 431-450. doi: 10.3934/dcds.2000.6.431

[17]

Qing Liu, Armin Schikorra. General existence of solutions to dynamic programming equations. Communications on Pure & Applied Analysis, 2015, 14 (1) : 167-184. doi: 10.3934/cpaa.2015.14.167

[18]

Shu Luan. On the existence of optimal control for semilinear elliptic equations with nonlinear neumann boundary conditions. Mathematical Control & Related Fields, 2017, 7 (3) : 493-506. doi: 10.3934/mcrf.2017018

[19]

Gabriella Zecca. An optimal control problem for some nonlinear elliptic equations with unbounded coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1393-1409. doi: 10.3934/dcdsb.2019021

[20]

Ryan Loxton, Qun Lin. Optimal fleet composition via dynamic programming and golden section search. Journal of Industrial & Management Optimization, 2011, 7 (4) : 875-890. doi: 10.3934/jimo.2011.7.875

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]