January  2012, 11(1): 275-305. doi: 10.3934/cpaa.2012.11.275

Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion

1. 

Graduate School of Advanced Mathematical Science, Meiji University, Kawasaki, 214-8571

2. 

Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Kawasaki, 214-8571

Received  August 2010 Revised  January 2011 Published  September 2011

We are concerned with a reaction diffusion model describing slow smoldering combustion. The process consists of a sheet of paper ignited on one side and in the presence of a flow of air confined in a narrow gap above the paper. It is observed that thermal-diffusion instability generates diverse spatial patterns in combustion front propagation, depending on flow velocity of gas supply. Particularly, if the velocity is rather fast, planar front propagating with almost constant velocity appears. Motivated by this observation, we discuss the existence and stability of $1$ dimensional traveling wave solutions of the model.
Citation: Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, Partial differential equations and related topics, 446 (1975), 5.  doi: 10.1007/BFb0070595.  Google Scholar

[2]

A. Fasano, M. Mimura and M. Primicerio, Modelling a slow smoldering combustion process,, Mathematical Methods in the Applied Science, 33 (2010), 1211.  doi: 10.1002/mma.1301.  Google Scholar

[3]

A. Fasano, H. Izuhara, M. Mimura and M. Primicerio, Traveling wave solutions in a simplified smoldering combustion model,, manuscript., ().   Google Scholar

[4]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981).   Google Scholar

[5]

K. Ikeda and M. Mimura, Mathematical treatment of a model for smoldering combustion,, Hiroshima Math. J., 38 (2008), 349.   Google Scholar

[6]

C. K. R. T. Jones, Geometric singular perturbation theory,, Dynamical systems (Montecatini Terme, 1609 (1995), 44.  doi: 10.1007/BFb0095239.  Google Scholar

[7]

A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems,, Birkh\, (1995).   Google Scholar

[8]

S. L. Olson, H. R. Baum and T. Kashiwagi, Finger-like smoldering over thin cellulosic sheets in microgravity,, The Combustion Institute, (1998), 2525.  doi: 10.1016/S0082-0784(98)80104-5.  Google Scholar

[9]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Springer-Verlag, 44 (1983).   Google Scholar

[10]

L. Roques, Study of the premixed flame model with heat losses. The existence of two solutions,, European J. Appl. Math., 16 (2005), 741.  doi: 10.1017/S0956792505006431.  Google Scholar

[11]

E. Yanagida, Stability of fast travelling pulse solutions of the FitzHugh-Nagumo equations,, J. Math. Biol., 22 (1985), 81.  doi: 10.1007/BF00276548.  Google Scholar

[12]

O. Zik, Z. Olami and E.Moses, Fingering instability in combustion,, Phys. Rev. Lett., 81 (1998), 3868.  doi: 10.1103/PhysRevLett.81.3868.  Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, Partial differential equations and related topics, 446 (1975), 5.  doi: 10.1007/BFb0070595.  Google Scholar

[2]

A. Fasano, M. Mimura and M. Primicerio, Modelling a slow smoldering combustion process,, Mathematical Methods in the Applied Science, 33 (2010), 1211.  doi: 10.1002/mma.1301.  Google Scholar

[3]

A. Fasano, H. Izuhara, M. Mimura and M. Primicerio, Traveling wave solutions in a simplified smoldering combustion model,, manuscript., ().   Google Scholar

[4]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981).   Google Scholar

[5]

K. Ikeda and M. Mimura, Mathematical treatment of a model for smoldering combustion,, Hiroshima Math. J., 38 (2008), 349.   Google Scholar

[6]

C. K. R. T. Jones, Geometric singular perturbation theory,, Dynamical systems (Montecatini Terme, 1609 (1995), 44.  doi: 10.1007/BFb0095239.  Google Scholar

[7]

A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems,, Birkh\, (1995).   Google Scholar

[8]

S. L. Olson, H. R. Baum and T. Kashiwagi, Finger-like smoldering over thin cellulosic sheets in microgravity,, The Combustion Institute, (1998), 2525.  doi: 10.1016/S0082-0784(98)80104-5.  Google Scholar

[9]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Springer-Verlag, 44 (1983).   Google Scholar

[10]

L. Roques, Study of the premixed flame model with heat losses. The existence of two solutions,, European J. Appl. Math., 16 (2005), 741.  doi: 10.1017/S0956792505006431.  Google Scholar

[11]

E. Yanagida, Stability of fast travelling pulse solutions of the FitzHugh-Nagumo equations,, J. Math. Biol., 22 (1985), 81.  doi: 10.1007/BF00276548.  Google Scholar

[12]

O. Zik, Z. Olami and E.Moses, Fingering instability in combustion,, Phys. Rev. Lett., 81 (1998), 3868.  doi: 10.1103/PhysRevLett.81.3868.  Google Scholar

[1]

Zhen-Hui Bu, Zhi-Cheng Wang. Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations Ⅰ. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2395-2430. doi: 10.3934/dcds.2017104

[2]

Claude-Michael Brauner, Josephus Hulshof, J.-F. Ripoll. Existence of travelling wave solutions in a combustion-radiation model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 193-208. doi: 10.3934/dcdsb.2001.1.193

[3]

Jong-Shenq Guo, Hirokazu Ninomiya, Chin-Chin Wu. Existence of a rotating wave pattern in a disk for a wave front interaction model. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1049-1063. doi: 10.3934/cpaa.2013.12.1049

[4]

Wancheng Sheng, Tong Zhang. Structural stability of solutions to the Riemann problem for a scalar nonconvex CJ combustion model. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 651-667. doi: 10.3934/dcds.2009.25.651

[5]

Zhen-Hui Bu, Zhi-Cheng Wang. Global stability of V-shaped traveling fronts in combustion and degenerate monostable equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2251-2286. doi: 10.3934/dcds.2018093

[6]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

[7]

Wei Ding, Wenzhang Huang, Siroj Kansakar. Traveling wave solutions for a diffusive sis epidemic model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1291-1304. doi: 10.3934/dcdsb.2013.18.1291

[8]

Judith R. Miller, Huihui Zeng. Multidimensional stability of planar traveling waves for an integrodifference model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 741-751. doi: 10.3934/dcdsb.2013.18.741

[9]

Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735

[10]

Jonathan E. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 925-940. doi: 10.3934/dcds.2004.10.925

[11]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020001

[12]

Anna Ghazaryan, Christopher K. R. T. Jones. On the stability of high Lewis number combustion fronts. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 809-826. doi: 10.3934/dcds.2009.24.809

[13]

Weiguo Zhang, Yan Zhao, Xiang Li. Qualitative analysis to the traveling wave solutions of Kakutani-Kawahara equation and its approximate damped oscillatory solution. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1075-1090. doi: 10.3934/cpaa.2013.12.1075

[14]

M. B. A. Mansour. Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 83-91. doi: 10.3934/mbe.2009.6.83

[15]

Zhaosheng Feng, Goong Chen. Traveling wave solutions in parametric forms for a diffusion model with a nonlinear rate of growth. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 763-780. doi: 10.3934/dcds.2009.24.763

[16]

Junhao Wen, Peixuan Weng. Traveling wave solutions in a diffusive producer-scrounger model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 627-645. doi: 10.3934/dcdsb.2017030

[17]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[18]

Liang Zhang, Bingtuan Li. Traveling wave solutions in an integro-differential competition model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 417-428. doi: 10.3934/dcdsb.2012.17.417

[19]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[20]

Vincent Calvez, Benoȋt Perthame, Shugo Yasuda. Traveling wave and aggregation in a flux-limited Keller-Segel model. Kinetic & Related Models, 2018, 11 (4) : 891-909. doi: 10.3934/krm.2018035

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]