• Previous Article
    Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis
  • CPAA Home
  • This Issue
  • Next Article
    Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion
January  2012, 11(1): 307-338. doi: 10.3934/cpaa.2012.11.307

Heterogeneity-induced spot dynamics for a three-component reaction-diffusion system

1. 

Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0813, Japan

2. 

Faculty of Photonics Science, Chitose Institute of Science and Technology, Chitose 066-8655, Japan

3. 

Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China

Received  February 2010 Revised  January 2011 Published  September 2011

Spatially localized patterns form a representative class of patterns in dissipative systems. We study how the dynamics of traveling spots in two-dimensional space change when heterogeneities are introduced in the media. The simplest but fundamental one is a line heterogeneity of jump type. When spots encounter the jump, they display various outputs including penetration, rebound, and trapping depending on the incident angle and its height. The system loses translational symmetry by the heterogeneity, but at the same time, it causes the emergence of various types of heterogeneity-induced-ordered-patterns (HIOPs) replacing the homogeneous constant state. We study these issues by using a three-component reaction-diffusion system with one activator and two inhibitors. The above outputs can be obtained through the interaction between the HIOPs and the traveling spots. The global bifurcation and eigenvalue behavior of HISPs are the key to understand the underlying mechanisms for the transitions among those dynamics. A reduction to a finite dimensional system is presented here to extract the model-independent nature of the dynamics. Selected numerical techniques for the bifurcation analysis are also provided.
Citation: Yasumasa Nishiura, Takashi Teramoto, Xiaohui Yuan. Heterogeneity-induced spot dynamics for a three-component reaction-diffusion system. Communications on Pure & Applied Analysis, 2012, 11 (1) : 307-338. doi: 10.3934/cpaa.2012.11.307
References:
[1]

M. Bär, M. Eiswirth, H.-H. Rotermund and G. Ertl, Solitary-wave phenomena in an excitable surface reaction,, Phys. Rev. Lett., 69 (1992), 945.  doi: 10.1103/PhysRevLett.69.945.  Google Scholar

[2]

M. Bär, E. Meron and C. Utzny, Pattern formation on anisotropic and heterogeneous catalytic surfaces,, Chaos, 12 (2002), 204.  doi: 10.1063/1.1450565.  Google Scholar

[3]

M. Bode, Front-bifurcations in reaction-diffusion systems with inhomogeneous parameter distributions,, Physica D, 106 (1997), 270.  doi: 10.1016/S0167-2789(97)00050-X.  Google Scholar

[4]

M. Bode, A. W. Liehr, C. P. Schenk and H.-G.Purwins, Interaction of dissipative solitons: particle-like behaviour of localized structures in a threecomponent reaction-diffusion system,, Physica D, 161 (2002), 45.  doi: 10.1016/S0167-2789(01)00360-8.  Google Scholar

[5]

P. C. Bressloff, S. E. Folias, A. Prat and Y.-X. Li, Oscillatory waves in inhomogeneous neural media,, Phys. Rev. Lett., 91 (2003).  doi: 10.1103/PhysRevLett.91.178101.  Google Scholar

[6]

E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, Yu, B. Sandstede and X. Wang, AUTO 2000: Continuation and bifurcation software for ordinary differential equations (with homcont),, Technical report, (2001).   Google Scholar

[7]

A. Doelman, P. van Heijster and T. Kaper, Pulse dynamics in a three-component system: existence analysys,, J. Dyn. Diff. Equat., 21 (2009), 73.  doi: 10.1007/s10884-008-9125-2.  Google Scholar

[8]

S.-I. Ei, M. Mumura and Nagayama, Interacting spots in reaction diffusion systems,, Discrete Contin. Dyn. Syst., 14 (2006), 31.   Google Scholar

[9]

G. B. Ermentrout and J. Rinzel, Reflected waves in an inhomogeneous excitable medium,, SIAM J. Appl. Math., 56 (1996), 1107.  doi: 10.1137/S0036139994276793.  Google Scholar

[10]

M. Gutman, I. Aviram and A. Rabinovitch, Pseudoreflection from interface between two oscillatory media: Extended driver,, Phys. Rev. E, 69 (2004).  doi: 10.1103/PhysRevE.69.016211.  Google Scholar

[11]

A. Hagberg, E. Meron, I. Rubinstein and B. Zaltzman, Controlling domain patterns far from equilibrium,, Phy. Rev. Lett., 76 (1996), 427.  doi: 10.1103/PhysRevLett.76.427.  Google Scholar

[12]

A. Hagberg, E. Meron, I. Rubinstein and B. Zaltzman, Order parameter equations for front bifurcations: planar and circular fronts,, Phy. Rev. E, 55 (1997), 4450.  doi: 10.1103/PhysRevE.55.4450.  Google Scholar

[13]

Y. Hayase and T Ohta, Self-replicating pulses and sierpinski gaskets in excitable media,, Phy. Rev. E, 62 (2000), 5998.  doi: 10.1103/PhysRevE.62.5998.  Google Scholar

[14]

P. van Heijster and B. Sandstede, Planar radial spots in a three-component FitzHugh-Nagumo system,, J. Nonlinear Sci., 21 (2011).   Google Scholar

[15]

H. Ikeda and M. Mimura, Wave-blocking phenomena in bistable reaction-diffusion systems,, SIAM J. Appl. Math., 49 (1989), 515.  doi: 10.1103/PhysRevE.62.5998.  Google Scholar

[16]

J. Keener and J. Sneyd, "Mathematical Physiology,", Springer-Verlag, (1998).   Google Scholar

[17]

R. B. Lehoucq, D. C. Sorensen and C. Yang, "ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods,", SIAM, (1998).   Google Scholar

[18]

T. J. Lewis and J. P. Keener, Wave-block in excitable media due to regions of depressed excitability,, SIAM J. Appl. Math., 61 (2000), 293.  doi: 10.1137/S0036139998349298.  Google Scholar

[19]

H. Meinhardt, "The Algorithmmic Beauty of Sea Shells,", PSpringer-Verlag, (1995).   Google Scholar

[20]

J. Miyazaki and S. Kinoshita, Stopping and initiation of a chemical pulse at the interface of excitable media with different diffusivity,, Phys. Rev. E, 76 (2007).  doi: 10.1103/PhysRevE.76.066201.  Google Scholar

[21]

Y. Nishiura, T. Teramoto and K.-I. Ueda, Dynamic transitions through scattors in dissipative systems,, Chaos, 13 (2003), 962.  doi: 10.1063/1.1592131.  Google Scholar

[22]

Y. Nishiura, T. Teramoto and K.-I. Ueda, Scattering and separators in dissipative systems,, Phys. Rev. E, 67 (2003).  doi: 10.1103/PhysRevE.67.056210.  Google Scholar

[23]

Y. Nishiura, T. Teramoto, X. Yuan and K.-I. Ueda, Dynamics of traveling pulses in heterogenous media,, Chaos, 17 (2007).  doi: 10.1063/1.2778553.  Google Scholar

[24]

Y. Nishiura, T. Teramoto and K.-I. Ueda, Scattering of traveling spots in dissipative systems,, Chaos, 15 (2005).  doi: 10.1063/1.2087127.  Google Scholar

[25]

J. P. Pauwelussen, Nerve impulse propagation in a branching nerve system: a simple model,, Physica D, 4 (1981), 67.  doi: 10.1016/0167-2789(81)90005-1.  Google Scholar

[26]

A. M. Pertsov, E. A. Ermakova and E. E. Shnol, On the diffraction of autowaves,, Physica D, 44 (1990), 178.  doi: 10.1016/0167-2789(90)90054-S.  Google Scholar

[27]

A. Prat and Y.-X. Li and P. Bressloff, Inhomogeneity-induced bifurcation of stationary and oscillatory pulses,, Physica D, 202 (2005), 177.  doi: 10.1016/j.physd.2005.02.005.  Google Scholar

[28]

H.-G. Purwins, H. U. Bödeker and Sh. Amiranashvili, Dissipative solitons,, Advances in Physics, 59 (2010), 485.  doi: 10.1080/00018732.2010.498228.  Google Scholar

[29]

A. G. Salinger, N. M. Bou-Rabee, E. A. Burroughs, R. B. Lehoucq, R. P. Pawlowski, L. A. Romero and E. D. Wilkes, "LOCA 1.1: Library of Continuation Algorithms, Theory and Implementation Manual,", Sandia National Laboratories, (2002).  doi: 10.2172/800778.  Google Scholar

[30]

C. P. Schenk, M. Or-Guil, M. Bode and H.-G. Purwins, Interacting pulses in three-component reaction-diffusion systems on two-dimensional domains,, Phys. Rev. Lett., 78 (1997), 3781.  doi: 10.1103/PhysRevLett.78.3781.  Google Scholar

[31]

P. Schütz, M. Bode and H. G. Purwins, Bifurcations of front dynamics in a reaction-diffusion system with spatial inhomogeneities,, Physica D, 82 (1995), 270.   Google Scholar

[32]

R. Seydel, "Practical Bifurcation and Stability Analysis,", Springer-Verlag, (1994).   Google Scholar

[33]

A. J. Steele, M. Tinsley and K. Showalter, Collective behavior of stabilized reaction-diffusion waves,, Chaos, 18 (2008).  doi: 10.1063/1.2900386.  Google Scholar

[34]

T. Teramoto, K. Suzuki and Y. Nishiura, Rotational motion of traveling spots in dissipative systems,, Phys. Rev. E, 80 (2009).  doi: 10.1103/PhysRevE.80.046208.  Google Scholar

[35]

T. Teramoto, X. Yuan, M. Bär and Y. Nishiura, Onset of inidirectional pulse propagation in an excitable medium with asymmetric heterogeneity,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.046205.  Google Scholar

[36]

T. Teramoto, Traveling spots through a line of heterogeneity,, unpublished., ().   Google Scholar

[37]

T. Teramoto, K.-I. Ueda and Y. Nishiura, Phase-dependent output of scattering process for traveling breathers,, Phys. Rev. E, 69 (2004).  doi: 10.1103/PhysRevE.69.056224.  Google Scholar

[38]

M. R. Tinsley, A. J. Steele and K. Showalter, Collective behavior of particle-like chemical waves,, Eur. Phys. J. Special Topics, 165 (2008), 161.  doi: 10.1140/epjst/e2008-00859-7.  Google Scholar

[39]

R. S. Tuminaro, M. Heroux, S. A. Hutchinson and J. N. Shadid, "Official Aztec User's Guide: Version 2.1,", Technical Report, (1999), 99.   Google Scholar

[40]

V. K. Vanag and I. R. Epstein, Localized patterns in reaction-diffusion systems,, Chaos, 17 (2007).  doi: 10.1063/1.2752494.  Google Scholar

[41]

J. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161.  doi: 10.1137/S0036144599364296.  Google Scholar

[42]

X. Yuan, T. Teramoto and Y. Nishiura, Heterogeneity-induced defect bifurcation and pulse dynamics for a three-component reaction-diffusion system,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.036220.  Google Scholar

[43]

A. M. Zhabotinsky, M. D. Eager and I. R. Epstein, Refraction and reflection of chemical waves,, Phys. Rev. Lett., 71 (1993), 1526.  doi: 10.1103/PhysRevLett.71.1526.  Google Scholar

show all references

References:
[1]

M. Bär, M. Eiswirth, H.-H. Rotermund and G. Ertl, Solitary-wave phenomena in an excitable surface reaction,, Phys. Rev. Lett., 69 (1992), 945.  doi: 10.1103/PhysRevLett.69.945.  Google Scholar

[2]

M. Bär, E. Meron and C. Utzny, Pattern formation on anisotropic and heterogeneous catalytic surfaces,, Chaos, 12 (2002), 204.  doi: 10.1063/1.1450565.  Google Scholar

[3]

M. Bode, Front-bifurcations in reaction-diffusion systems with inhomogeneous parameter distributions,, Physica D, 106 (1997), 270.  doi: 10.1016/S0167-2789(97)00050-X.  Google Scholar

[4]

M. Bode, A. W. Liehr, C. P. Schenk and H.-G.Purwins, Interaction of dissipative solitons: particle-like behaviour of localized structures in a threecomponent reaction-diffusion system,, Physica D, 161 (2002), 45.  doi: 10.1016/S0167-2789(01)00360-8.  Google Scholar

[5]

P. C. Bressloff, S. E. Folias, A. Prat and Y.-X. Li, Oscillatory waves in inhomogeneous neural media,, Phys. Rev. Lett., 91 (2003).  doi: 10.1103/PhysRevLett.91.178101.  Google Scholar

[6]

E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, Yu, B. Sandstede and X. Wang, AUTO 2000: Continuation and bifurcation software for ordinary differential equations (with homcont),, Technical report, (2001).   Google Scholar

[7]

A. Doelman, P. van Heijster and T. Kaper, Pulse dynamics in a three-component system: existence analysys,, J. Dyn. Diff. Equat., 21 (2009), 73.  doi: 10.1007/s10884-008-9125-2.  Google Scholar

[8]

S.-I. Ei, M. Mumura and Nagayama, Interacting spots in reaction diffusion systems,, Discrete Contin. Dyn. Syst., 14 (2006), 31.   Google Scholar

[9]

G. B. Ermentrout and J. Rinzel, Reflected waves in an inhomogeneous excitable medium,, SIAM J. Appl. Math., 56 (1996), 1107.  doi: 10.1137/S0036139994276793.  Google Scholar

[10]

M. Gutman, I. Aviram and A. Rabinovitch, Pseudoreflection from interface between two oscillatory media: Extended driver,, Phys. Rev. E, 69 (2004).  doi: 10.1103/PhysRevE.69.016211.  Google Scholar

[11]

A. Hagberg, E. Meron, I. Rubinstein and B. Zaltzman, Controlling domain patterns far from equilibrium,, Phy. Rev. Lett., 76 (1996), 427.  doi: 10.1103/PhysRevLett.76.427.  Google Scholar

[12]

A. Hagberg, E. Meron, I. Rubinstein and B. Zaltzman, Order parameter equations for front bifurcations: planar and circular fronts,, Phy. Rev. E, 55 (1997), 4450.  doi: 10.1103/PhysRevE.55.4450.  Google Scholar

[13]

Y. Hayase and T Ohta, Self-replicating pulses and sierpinski gaskets in excitable media,, Phy. Rev. E, 62 (2000), 5998.  doi: 10.1103/PhysRevE.62.5998.  Google Scholar

[14]

P. van Heijster and B. Sandstede, Planar radial spots in a three-component FitzHugh-Nagumo system,, J. Nonlinear Sci., 21 (2011).   Google Scholar

[15]

H. Ikeda and M. Mimura, Wave-blocking phenomena in bistable reaction-diffusion systems,, SIAM J. Appl. Math., 49 (1989), 515.  doi: 10.1103/PhysRevE.62.5998.  Google Scholar

[16]

J. Keener and J. Sneyd, "Mathematical Physiology,", Springer-Verlag, (1998).   Google Scholar

[17]

R. B. Lehoucq, D. C. Sorensen and C. Yang, "ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods,", SIAM, (1998).   Google Scholar

[18]

T. J. Lewis and J. P. Keener, Wave-block in excitable media due to regions of depressed excitability,, SIAM J. Appl. Math., 61 (2000), 293.  doi: 10.1137/S0036139998349298.  Google Scholar

[19]

H. Meinhardt, "The Algorithmmic Beauty of Sea Shells,", PSpringer-Verlag, (1995).   Google Scholar

[20]

J. Miyazaki and S. Kinoshita, Stopping and initiation of a chemical pulse at the interface of excitable media with different diffusivity,, Phys. Rev. E, 76 (2007).  doi: 10.1103/PhysRevE.76.066201.  Google Scholar

[21]

Y. Nishiura, T. Teramoto and K.-I. Ueda, Dynamic transitions through scattors in dissipative systems,, Chaos, 13 (2003), 962.  doi: 10.1063/1.1592131.  Google Scholar

[22]

Y. Nishiura, T. Teramoto and K.-I. Ueda, Scattering and separators in dissipative systems,, Phys. Rev. E, 67 (2003).  doi: 10.1103/PhysRevE.67.056210.  Google Scholar

[23]

Y. Nishiura, T. Teramoto, X. Yuan and K.-I. Ueda, Dynamics of traveling pulses in heterogenous media,, Chaos, 17 (2007).  doi: 10.1063/1.2778553.  Google Scholar

[24]

Y. Nishiura, T. Teramoto and K.-I. Ueda, Scattering of traveling spots in dissipative systems,, Chaos, 15 (2005).  doi: 10.1063/1.2087127.  Google Scholar

[25]

J. P. Pauwelussen, Nerve impulse propagation in a branching nerve system: a simple model,, Physica D, 4 (1981), 67.  doi: 10.1016/0167-2789(81)90005-1.  Google Scholar

[26]

A. M. Pertsov, E. A. Ermakova and E. E. Shnol, On the diffraction of autowaves,, Physica D, 44 (1990), 178.  doi: 10.1016/0167-2789(90)90054-S.  Google Scholar

[27]

A. Prat and Y.-X. Li and P. Bressloff, Inhomogeneity-induced bifurcation of stationary and oscillatory pulses,, Physica D, 202 (2005), 177.  doi: 10.1016/j.physd.2005.02.005.  Google Scholar

[28]

H.-G. Purwins, H. U. Bödeker and Sh. Amiranashvili, Dissipative solitons,, Advances in Physics, 59 (2010), 485.  doi: 10.1080/00018732.2010.498228.  Google Scholar

[29]

A. G. Salinger, N. M. Bou-Rabee, E. A. Burroughs, R. B. Lehoucq, R. P. Pawlowski, L. A. Romero and E. D. Wilkes, "LOCA 1.1: Library of Continuation Algorithms, Theory and Implementation Manual,", Sandia National Laboratories, (2002).  doi: 10.2172/800778.  Google Scholar

[30]

C. P. Schenk, M. Or-Guil, M. Bode and H.-G. Purwins, Interacting pulses in three-component reaction-diffusion systems on two-dimensional domains,, Phys. Rev. Lett., 78 (1997), 3781.  doi: 10.1103/PhysRevLett.78.3781.  Google Scholar

[31]

P. Schütz, M. Bode and H. G. Purwins, Bifurcations of front dynamics in a reaction-diffusion system with spatial inhomogeneities,, Physica D, 82 (1995), 270.   Google Scholar

[32]

R. Seydel, "Practical Bifurcation and Stability Analysis,", Springer-Verlag, (1994).   Google Scholar

[33]

A. J. Steele, M. Tinsley and K. Showalter, Collective behavior of stabilized reaction-diffusion waves,, Chaos, 18 (2008).  doi: 10.1063/1.2900386.  Google Scholar

[34]

T. Teramoto, K. Suzuki and Y. Nishiura, Rotational motion of traveling spots in dissipative systems,, Phys. Rev. E, 80 (2009).  doi: 10.1103/PhysRevE.80.046208.  Google Scholar

[35]

T. Teramoto, X. Yuan, M. Bär and Y. Nishiura, Onset of inidirectional pulse propagation in an excitable medium with asymmetric heterogeneity,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.046205.  Google Scholar

[36]

T. Teramoto, Traveling spots through a line of heterogeneity,, unpublished., ().   Google Scholar

[37]

T. Teramoto, K.-I. Ueda and Y. Nishiura, Phase-dependent output of scattering process for traveling breathers,, Phys. Rev. E, 69 (2004).  doi: 10.1103/PhysRevE.69.056224.  Google Scholar

[38]

M. R. Tinsley, A. J. Steele and K. Showalter, Collective behavior of particle-like chemical waves,, Eur. Phys. J. Special Topics, 165 (2008), 161.  doi: 10.1140/epjst/e2008-00859-7.  Google Scholar

[39]

R. S. Tuminaro, M. Heroux, S. A. Hutchinson and J. N. Shadid, "Official Aztec User's Guide: Version 2.1,", Technical Report, (1999), 99.   Google Scholar

[40]

V. K. Vanag and I. R. Epstein, Localized patterns in reaction-diffusion systems,, Chaos, 17 (2007).  doi: 10.1063/1.2752494.  Google Scholar

[41]

J. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161.  doi: 10.1137/S0036144599364296.  Google Scholar

[42]

X. Yuan, T. Teramoto and Y. Nishiura, Heterogeneity-induced defect bifurcation and pulse dynamics for a three-component reaction-diffusion system,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.036220.  Google Scholar

[43]

A. M. Zhabotinsky, M. D. Eager and I. R. Epstein, Refraction and reflection of chemical waves,, Phys. Rev. Lett., 71 (1993), 1526.  doi: 10.1103/PhysRevLett.71.1526.  Google Scholar

[1]

Shin-Ichiro Ei, Kota Ikeda, Eiji Yanagida. Instability of multi-spot patterns in shadow systems of reaction-diffusion equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 717-736. doi: 10.3934/cpaa.2015.14.717

[2]

Matthieu Alfaro, Thomas Giletti. Varying the direction of propagation in reaction-diffusion equations in periodic media. Networks & Heterogeneous Media, 2016, 11 (3) : 369-393. doi: 10.3934/nhm.2016001

[3]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[4]

Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011

[5]

Masaharu Taniguchi. Traveling fronts in perturbed multistable reaction-diffusion equations. Conference Publications, 2011, 2011 (Special) : 1368-1377. doi: 10.3934/proc.2011.2011.1368

[6]

Henri Berestycki, Guillemette Chapuisat. Traveling fronts guided by the environment for reaction-diffusion equations. Networks & Heterogeneous Media, 2013, 8 (1) : 79-114. doi: 10.3934/nhm.2013.8.79

[7]

Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373

[8]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[9]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[10]

Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic & Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048

[11]

Wei-Jie Sheng, Wan-Tong Li. Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2681-2704. doi: 10.3934/dcds.2017115

[12]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[13]

Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681

[14]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[15]

Masaharu Taniguchi. Instability of planar traveling waves in bistable reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 21-44. doi: 10.3934/dcdsb.2003.3.21

[16]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[17]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[18]

Rebecca McKay, Theodore Kolokolnikov, Paul Muir. Interface oscillations in reaction-diffusion systems above the Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2523-2543. doi: 10.3934/dcdsb.2012.17.2523

[19]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020053

[20]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (8)

[Back to Top]