January  2012, 11(1): 339-364. doi: 10.3934/cpaa.2012.11.339

Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis

1. 

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914, Japan

Received  January 2010 Revised  August 2010 Published  September 2011

We are concerned with the finite-element approximation for the Keller-Segel system that describes the aggregation of slime molds resulting from their chemotactic features. The scheme makes use of a semi-implicit time discretization with a time-increment control and Baba-Tabata's conservative upwind finite-element approximation in order to realize the positivity and mass conservation properties. The main aim is to present error analysis that is an application of the discrete version of the analytical semigroup theory.
Citation: Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure & Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339
References:
[1]

R. A. Adams and J. Fournier, "Sobolev Spaces,'', 2nd edition, (2003).   Google Scholar

[2]

S. C. Brenner and L. R. Scott, "The Mathematical Theory of Finite Element Methods,'', 3rd edition, (2008).  doi: 10.1007/978-0-387-75934-0.  Google Scholar

[3]

K. Baba and T. Tabata, On a conservative upwind finite-element scheme for convective diffusion equations,, RAIRO Anal. Num\'er., 15 (1981), 3.   Google Scholar

[4]

M. Boman, Estimates for the $L_2$-projection onto continuous finite element spaces in a weighted $L_p$-norm,, {BIT Numer. Math.}, 46 (2006), 249.  doi: 10.1007/s10543-006-0062-3.  Google Scholar

[5]

A. Chertock and A. Kurganov, A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models,, {Numer. Math.}, 111 (2008), 169.  doi: 10.1007/s00211-008-0188-0.  Google Scholar

[6]

P. G. Ciarlet and R. A. Raviart, General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods,, Arch. Rational Mech. Anal., 46 (1972), 177.  doi: 10.1007/BF00252458.  Google Scholar

[7]

M. Crouzeix and V. Thomée, The stability in $L_p$ and $W^1_p$ of the $L_2$-projection onto finite element function spaces,, Math. Comp., 48 (1987), 521.  doi: 10.1090/S0025-5718-1987-0878688-2.  Google Scholar

[8]

J. Douglas Jr., T. Dupont and L. Wahlbin, The stability in $L_p$ and $W_p^1$ of the $L_2$-projection into finite element function spaces,, Numer. Math., 23 (1975), 193.  doi: 10.1007/BF01400302.  Google Scholar

[9]

Y. Epshteyn and A. Izmirlioglu, Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model,, J. Sci. Comput., 40 (2009), 211.  doi: 10.1007/s10915-009-9281-5.  Google Scholar

[10]

Y. Epshteyn and A. Kurganov, New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model,, SIAM J. Numer. Anal., 47 (): 386.  doi: 0.1137/07070423X.  Google Scholar

[11]

M. Efendiev, E. Nakaguchi and W. L. Wendland, Dimension estimate of the global attractor for a semi-discretized chemotaxis-growth system by conservative upwind finite-element scheme,, J. Math. Anal. Appl., 358 (2009), 136.  doi: 10.1016/j.jmaa.2009.04.025.  Google Scholar

[12]

F. Filbet, A finite volume scheme for Patlak-Keller-Segel chemotaxis model,, Numer. Math., 104 (2006), 457.  doi: 10.1007/s00211-006-0024-3.  Google Scholar

[13]

H. Fujita, N. Saito and T. Suzuki, "Operator Theory and Numerical Methods,'', Elsevier, (2001).   Google Scholar

[14]

D. Fujiwara, $L^p$-theory for characterizing the domain of the fractional powers of $-\Delta $ in the half space,, J. Fac. Sci. Univ. Tokyo Sect. I, 15 (1968), 169.   Google Scholar

[15]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains,'', Pitman, (1985).   Google Scholar

[16]

J. Haškovec and C. Schmeiser, Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system,, J. Stat. Phys., 135 (2009), 133.  doi: 10.1007/s10955-009-9717-1.  Google Scholar

[17]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[18]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I,, {Jahresber. Deutsch. Math.-Verein.}, 105 (2003), 103.   Google Scholar

[19]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences II,, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51.   Google Scholar

[20]

F. F. Keller and L. A. Segel, Initiation on slime mold aggregation viewed as instability,, J. Theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[21]

A. Marrocco, Numerical simulation of chemotactic bacteria aggregation via mixed finite-elements,, M2AN Math. Model. Numer. Anal., 37 (2003), 617.  doi: 10.1051/m2an:2003048.  Google Scholar

[22]

E. Nakaguchi and Y. Yagi, Fully discrete approximation by Galerkin Runge-Kutta methods for quasilinear parabolic systems,, Hokkaido Math. J., 31 (2002), 385.   Google Scholar

[23]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,'', Springer, (1983).   Google Scholar

[24]

N. Saito, A holomorphic semigroup approach to the lumped mass finite element method,, J. Comput. Appl. Math., 169 (2004), 71.  doi: 10.1016/j.cam.2003.11.003.  Google Scholar

[25]

N. Saito, Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis,, IMA J. Numer. Anal., 27 (2007), 332.  doi: 10.1093/imanum/drl018.  Google Scholar

[26]

N. Saito, Conservative numerical schemes for the Keller-Segel system and numerical results,, RIMS K\^oky\^uroku Bessatsu, B15 (2009), 125.   Google Scholar

[27]

T. Suzuki, "Free Energy and Self-Interacting Particles,'', Birkhauser, (2005).  doi: 10.1007/0-8176-4436-9.  Google Scholar

[28]

T. Suzuki and T. Senba, "Applied Analysis: Mathematical Methods in Natural Science,'', Imperial College Press, (2004).   Google Scholar

show all references

References:
[1]

R. A. Adams and J. Fournier, "Sobolev Spaces,'', 2nd edition, (2003).   Google Scholar

[2]

S. C. Brenner and L. R. Scott, "The Mathematical Theory of Finite Element Methods,'', 3rd edition, (2008).  doi: 10.1007/978-0-387-75934-0.  Google Scholar

[3]

K. Baba and T. Tabata, On a conservative upwind finite-element scheme for convective diffusion equations,, RAIRO Anal. Num\'er., 15 (1981), 3.   Google Scholar

[4]

M. Boman, Estimates for the $L_2$-projection onto continuous finite element spaces in a weighted $L_p$-norm,, {BIT Numer. Math.}, 46 (2006), 249.  doi: 10.1007/s10543-006-0062-3.  Google Scholar

[5]

A. Chertock and A. Kurganov, A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models,, {Numer. Math.}, 111 (2008), 169.  doi: 10.1007/s00211-008-0188-0.  Google Scholar

[6]

P. G. Ciarlet and R. A. Raviart, General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods,, Arch. Rational Mech. Anal., 46 (1972), 177.  doi: 10.1007/BF00252458.  Google Scholar

[7]

M. Crouzeix and V. Thomée, The stability in $L_p$ and $W^1_p$ of the $L_2$-projection onto finite element function spaces,, Math. Comp., 48 (1987), 521.  doi: 10.1090/S0025-5718-1987-0878688-2.  Google Scholar

[8]

J. Douglas Jr., T. Dupont and L. Wahlbin, The stability in $L_p$ and $W_p^1$ of the $L_2$-projection into finite element function spaces,, Numer. Math., 23 (1975), 193.  doi: 10.1007/BF01400302.  Google Scholar

[9]

Y. Epshteyn and A. Izmirlioglu, Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model,, J. Sci. Comput., 40 (2009), 211.  doi: 10.1007/s10915-009-9281-5.  Google Scholar

[10]

Y. Epshteyn and A. Kurganov, New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model,, SIAM J. Numer. Anal., 47 (): 386.  doi: 0.1137/07070423X.  Google Scholar

[11]

M. Efendiev, E. Nakaguchi and W. L. Wendland, Dimension estimate of the global attractor for a semi-discretized chemotaxis-growth system by conservative upwind finite-element scheme,, J. Math. Anal. Appl., 358 (2009), 136.  doi: 10.1016/j.jmaa.2009.04.025.  Google Scholar

[12]

F. Filbet, A finite volume scheme for Patlak-Keller-Segel chemotaxis model,, Numer. Math., 104 (2006), 457.  doi: 10.1007/s00211-006-0024-3.  Google Scholar

[13]

H. Fujita, N. Saito and T. Suzuki, "Operator Theory and Numerical Methods,'', Elsevier, (2001).   Google Scholar

[14]

D. Fujiwara, $L^p$-theory for characterizing the domain of the fractional powers of $-\Delta $ in the half space,, J. Fac. Sci. Univ. Tokyo Sect. I, 15 (1968), 169.   Google Scholar

[15]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains,'', Pitman, (1985).   Google Scholar

[16]

J. Haškovec and C. Schmeiser, Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system,, J. Stat. Phys., 135 (2009), 133.  doi: 10.1007/s10955-009-9717-1.  Google Scholar

[17]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[18]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I,, {Jahresber. Deutsch. Math.-Verein.}, 105 (2003), 103.   Google Scholar

[19]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences II,, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51.   Google Scholar

[20]

F. F. Keller and L. A. Segel, Initiation on slime mold aggregation viewed as instability,, J. Theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[21]

A. Marrocco, Numerical simulation of chemotactic bacteria aggregation via mixed finite-elements,, M2AN Math. Model. Numer. Anal., 37 (2003), 617.  doi: 10.1051/m2an:2003048.  Google Scholar

[22]

E. Nakaguchi and Y. Yagi, Fully discrete approximation by Galerkin Runge-Kutta methods for quasilinear parabolic systems,, Hokkaido Math. J., 31 (2002), 385.   Google Scholar

[23]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,'', Springer, (1983).   Google Scholar

[24]

N. Saito, A holomorphic semigroup approach to the lumped mass finite element method,, J. Comput. Appl. Math., 169 (2004), 71.  doi: 10.1016/j.cam.2003.11.003.  Google Scholar

[25]

N. Saito, Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis,, IMA J. Numer. Anal., 27 (2007), 332.  doi: 10.1093/imanum/drl018.  Google Scholar

[26]

N. Saito, Conservative numerical schemes for the Keller-Segel system and numerical results,, RIMS K\^oky\^uroku Bessatsu, B15 (2009), 125.   Google Scholar

[27]

T. Suzuki, "Free Energy and Self-Interacting Particles,'', Birkhauser, (2005).  doi: 10.1007/0-8176-4436-9.  Google Scholar

[28]

T. Suzuki and T. Senba, "Applied Analysis: Mathematical Methods in Natural Science,'', Imperial College Press, (2004).   Google Scholar

[1]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[2]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[3]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[4]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[7]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[8]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[9]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[10]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[11]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[12]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[13]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[14]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[15]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[16]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[17]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[18]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[19]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[20]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (402)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]