Citation: |
[1] |
R. A. Adams and J. Fournier, "Sobolev Spaces,'' 2nd edition, Academic Press, 2003. |
[2] |
S. C. Brenner and L. R. Scott, "The Mathematical Theory of Finite Element Methods,'' 3rd edition, Springer, 2008.doi: 10.1007/978-0-387-75934-0. |
[3] |
K. Baba and T. Tabata, On a conservative upwind finite-element scheme for convective diffusion equations, RAIRO Anal. Numér., 15 (1981), 3-25. |
[4] |
M. Boman, Estimates for the $L_2$-projection onto continuous finite element spaces in a weighted $L_p$-norm, BIT Numer. Math., 46 (2006), 249-260.doi: 10.1007/s10543-006-0062-3. |
[5] |
A. Chertock and A. Kurganov, A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math., 111 (2008), 169-205.doi: 10.1007/s00211-008-0188-0. |
[6] |
P. G. Ciarlet and R. A. Raviart, General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods, Arch. Rational Mech. Anal., 46 (1972), 177-199.doi: 10.1007/BF00252458. |
[7] |
M. Crouzeix and V. Thomée, The stability in $L_p$ and $W^1_p$ of the $L_2$-projection onto finite element function spaces, Math. Comp., 48 (1987), 521-532.doi: 10.1090/S0025-5718-1987-0878688-2. |
[8] |
J. Douglas Jr., T. Dupont and L. Wahlbin, The stability in $L_p$ and $W_p^1$ of the $L_2$-projection into finite element function spaces, Numer. Math., 23 (1975), 193-197.doi: 10.1007/BF01400302. |
[9] |
Y. Epshteyn and A. Izmirlioglu, Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model, J. Sci. Comput., 40 (2009), 211-256.doi: 10.1007/s10915-009-9281-5. |
[10] |
Y. Epshteyn and A. Kurganov, New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model, SIAM J. Numer. Anal., 47 (2008/09), 386-408. doi: 0.1137/07070423X. |
[11] |
M. Efendiev, E. Nakaguchi and W. L. Wendland, Dimension estimate of the global attractor for a semi-discretized chemotaxis-growth system by conservative upwind finite-element scheme, J. Math. Anal. Appl., 358 (2009), 136-147.doi: 10.1016/j.jmaa.2009.04.025. |
[12] |
F. Filbet, A finite volume scheme for Patlak-Keller-Segel chemotaxis model, Numer. Math., 104 (2006), 457-488.doi: 10.1007/s00211-006-0024-3. |
[13] |
H. Fujita, N. Saito and T. Suzuki, "Operator Theory and Numerical Methods,'' Elsevier, 2001. |
[14] |
D. Fujiwara, $L^p$-theory for characterizing the domain of the fractional powers of $-\Delta $ in the half space, J. Fac. Sci. Univ. Tokyo Sect. I, 15 (1968), 169-177. |
[15] |
P. Grisvard, "Elliptic Problems in Nonsmooth Domains,'' Pitman, 1985. |
[16] |
J. Haškovec and C. Schmeiser, Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system, J. Stat. Phys., 135 (2009), 133-151.doi: 10.1007/s10955-009-9717-1. |
[17] |
T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.doi: 10.1007/s00285-008-0201-3. |
[18] |
D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165. |
[19] |
D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences II, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-89. |
[20] |
F. F. Keller and L. A. Segel, Initiation on slime mold aggregation viewed as instability, J. Theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5. |
[21] |
A. Marrocco, Numerical simulation of chemotactic bacteria aggregation via mixed finite-elements, M2AN Math. Model. Numer. Anal., 37 (2003), 617-630.doi: 10.1051/m2an:2003048. |
[22] |
E. Nakaguchi and Y. Yagi, Fully discrete approximation by Galerkin Runge-Kutta methods for quasilinear parabolic systems, Hokkaido Math. J., 31 (2002), 385-429. |
[23] |
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,'' Springer, 1983. |
[24] |
N. Saito, A holomorphic semigroup approach to the lumped mass finite element method, J. Comput. Appl. Math., 169 (2004), 71-85.doi: 10.1016/j.cam.2003.11.003. |
[25] |
N. Saito, Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis, IMA J. Numer. Anal., 27 (2007), 332-365.doi: 10.1093/imanum/drl018. |
[26] |
N. Saito, Conservative numerical schemes for the Keller-Segel system and numerical results, RIMS Kôkyûroku Bessatsu, Kyoto University, B15 (2009), 125-146. |
[27] |
T. Suzuki, "Free Energy and Self-Interacting Particles,'' Birkhauser, 2005.doi: 10.1007/0-8176-4436-9. |
[28] |
T. Suzuki and T. Senba, "Applied Analysis: Mathematical Methods in Natural Science,'' Imperial College Press, 2004. |