\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the solvability conditions for the diffusion equation with convection terms

Abstract / Introduction Related Papers Cited by
  • A linear second order elliptic equation describing heat or mass diffusion and convection on a given velocity field is considered in $R^3$. The corresponding operator $L$ may not satisfy the Fredholm property. In this case, solvability conditions for the equation $L u = f$ are not known. In this work, we derive solvability conditions in $H^2(R^3)$ for the non self-adjoint problem by relating it to a self-adjoint Schrödinger type operator, for which solvability conditions are obtained in our previous work [13].
    Mathematics Subject Classification: Primary: 35J10, 35P10; Secondary: 35P25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. L. Cycon, R. G. Froese, W. Kirsch and B. Simon, "Schrödinger Operators with Application to Quantum Mechanics and Global Geometry," Springer-Verlag, Berlin-Heidelberg-New York, 1987.

    [2]

    A. Ducrot, M. Marion and V. Volpert, "Reaction-diffusion Waves (with the Lewis number different from 1)," Publibook, Paris, 2009.

    [3]

    F. Hamel, H. Berestycki and N. Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Comm. Math. Phys., 253 (2005), 451-480.doi: 10.1007/S0022000412019.

    [4]

    F. Hamel, N. Nadirashvili and E. Russ, An isoperimetric inequality for the principal eigenvalue of the Laplacian with drift, C.R. Math. Acad. Sci. Paris, 340 (2005), 347-352.doi: 10.1016/j.crma.2005.01.012.

    [5]

    B. L. G. Jonsson, M. Merkli, I. M. Sigal and F. Ting, "Applied Analysis," 349 pages (in preparation).

    [6]

    T. KatoWave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1965/1966), 258-279. doi: 10.1007/BF01360915.

    [7]

    E. Lieb and M. Loss, "Analysis," Graduate studies in Mathematics, 14, American Mathematical Society, Providence, RI, 1997.

    [8]

    M. Reed and B. Simon, "Methods of Modern Mathematical Physics, III. Scattering Theory," Academic Press, 1979.

    [9]

    I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155 (2004), 451-513.doi: 10.1007/S0022200303254.

    [10]

    R. Texier-Picard and V. Volpert, Reaction-diffusion-convection problems in unbounded cylinders, Revista Matematica Complutense, 16 (2003), 233-276.

    [11]

    V. Volpert and A. Volpert, Convective instability of reaction fronts. Linear stability analysis, Eur. J. Appl. Math., 9 (1998), 507-525.doi: 10.1017/S095679259800357X.

    [12]

    A. Volpert and V. Volpert, Fredholm property of elliptic operators in unbounded domains, Trans. Moscow Math. Soc., 67 (2006), 127-197.doi: 10.1090/S0077155406001592.

    [13]

    V. Vougalter and V. Volpert, Solvability conditions for some non Fredholm operators, Proc. Edinb. Math. Soc., 54 (2011), 249-271.doi: 10.1017/S0013091509000236.

    [14]

    V. Vougalter and V.Volpert, On the solvability conditions for some non Fredholm operators, Int. J. Pure Appl. Math., 60 (2010), 169-191.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(216) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return