March  2012, 11(2): 407-441. doi: 10.3934/cpaa.2012.11.407

Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows

1. 

Dipartimento di Matematica ``F. Brioschi'', Politecnico di Milano, Milano, Italy

Received  October 2010 Revised  December 2010 Published  October 2011

We analyze a simplified Ericksen-Leslie model for nematic liquid crystal flows firstly introduced in [18] with non-autonomous forcing bulk term and boundary conditions on the order parameter field. We obtain existence of weak solutions in the two- and three-dimensional cases. We prove uniqueness, continuous dependence on initial conditions, forcing and boundary terms and also existence of strong solutions in the 2D case. Focusing on the 2D case, we then study the long term behavior of solutions by obtaining existence of global attractors for normal forcing terms (according to [21]). Finally, we prove the existence of exponential attractors for quasi-periodic forcing terms in the 2D model.
Citation: Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407
References:
[1]

H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations,, Nonlinear Anal., 4 (1980), 677. doi: 10.1016/0362-546X(80)90068-1. Google Scholar

[2]

V. Chepyzhov and M. Vishik, "Attractors for Equations of Mathematical Physics,", Amer. Math. Soc. Colloq. Publ. 49, 49 (2002). Google Scholar

[3]

B. Climent-Ezquerra, F. Guillen-González and M. Rojas-Medar, Reproductivity for a nematic liquid crystal model,, Z. Angew. Math. Phys. ZAMP, 71 (2006), 984. doi: 10.1007/s00033-005-0038-1. Google Scholar

[4]

B. Climent-Ezquerra, F. Guillen-González and M. Moreno-Iraberte, Regularity and time-periodicity for a nematic liquid crystal model,, Nonlinear Anal., 71 (2009), 530. doi: 10.1016/j.na.2008.10.092. Google Scholar

[5]

P. De Gennes and J. Prost, "The Physics of Liquid Crystals,", 2nd edition, (1993). Google Scholar

[6]

K. Deimling, "Nonlinear Functional Analysis,", Springer-Verlag, (1985). Google Scholar

[7]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, "Exponential Attractors for Dissipative Evolution Equations,", Research in Applied Mathematics, (1994). Google Scholar

[8]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $R^3$,, C. R. Acad. Sci. Paris, 330 (2000), 713. Google Scholar

[9]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems,, Proc. Roy. Soc. Edinburgh, 135 (2005), 703. Google Scholar

[10]

L. Evans, "Partial Differential Equations,", Grad. Stud. Math. 19, 19 (1998). Google Scholar

[11]

J. Fan and T. Ozawa, Regularity criteria for a simplified Ericksen-Leslie system modelling the flow of liquid crystals,, Discrete Contin. Dyn. Syst., 25 (2009), 859. doi: 10.3934/dcds.2009.25.859. Google Scholar

[12]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", 2nd edition, (1983). Google Scholar

[13]

F. Guillén-González and M. Rojas-Medar, Global solution of nematic liquid crystals models,, C. R. Acad. Sci. Paris, 335 (2002), 1085. Google Scholar

[14]

F. Guillén-González, M. Rodríguez-Bellido and M. Rojas-Medar, Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model,, Math. Nachr., 282 (2009), 846. doi: 10.1002/mana.200610776. Google Scholar

[15]

X. Hu and D. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals,, Commun. Math. Phys., 296 (2010), 861. doi: 10.1007/s00220-010-1017-8. Google Scholar

[16]

F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transitions and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789. doi: 10.1002/cpa.3160420605. Google Scholar

[17]

F. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions,, Arch. Ration. Mech. Anal., 197 (2010), 297. doi: 10.1007/s00205-009-0278-x. Google Scholar

[18]

F. Lin and C. Liu, Nonparabolic dissipative systems modelling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501. doi: 10.1002/cpa.3160480503. Google Scholar

[19]

J.-L. Lions and E. Magenes, "Problèmes aux limites non homogènes et applications,", Volume 1, (1968). Google Scholar

[20]

C. Liu and J. Shen, On liquid crystal flows with free-slip boundary conditions,, Discrete Contin. Dyn. Syst., 7 (2001), 307. doi: 10.3934/dcds.2001.7.307. Google Scholar

[21]

S. Lu, H. Wu and C. Zhong, Attractors for nonautomous 2D Navier-Stokes equations with normal external forces,, Discrete Contin. Dyn. Syst., 13 (2005), 701. doi: 10.3934/dcds.2005.13.701. Google Scholar

[22]

S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces,, J. Differential Equations, 230 (2006), 196. doi: 10.1016/j.jde.2006.07.009. Google Scholar

[23]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in, (2008), 103. doi: 10.1016/S1874-5717(08)00003-0. Google Scholar

[24]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains,, Nonlinear Anal., 32 (1998), 71. doi: 10.1016/S0362-546X(97)00453-7. Google Scholar

[25]

S. Shkoller, Well-posedness and global attractors for liquid crystals on Riemannian manifolds,, Comm. Partial Differential Equations, 27 (2002), 1103. doi: 10.1081/PDE-120004895. Google Scholar

[26]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

[27]

I. Stewart, "The Static and Dynamic Continuum Theory of Liquid Crystals, A Mathematical Introduction,", Taylor & Francis, (2004). Google Scholar

[28]

H. Sun and C. Liu, On energetic variational approaches in modelling the nematic liquid crystal flows,, Discrete Contin. Dyn. Syst., 23 (2009), 455. doi: 10.3934/dcds.2009.23.455. Google Scholar

[29]

L. Tartar, "An Introduction to Sobolev Spaces and Interpolation Spaces,", Springer Verlag, (2007). Google Scholar

[30]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,", 2nd edition, 68 (1997). Google Scholar

[31]

R. Temam, "Navier-Stokes Equations: Theory and Numerical Analysis,", Reprint of the 1984 edition, (1984). Google Scholar

[32]

E. Virga, "Variational Theories for Liquid Crystals,", Applied Mathematics and Mathematical Computations, 8 (1994). Google Scholar

[33]

H. Wu, Long-time behaviour for a nonlinear hydrodynamic system modelling the nematic liquid crystal flows,, Discrete Contin. Dyn. Syst., 20 (2010), 379. Google Scholar

[34]

H. Wu, X. Xu and C. Liu, Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties,, preprint, (). Google Scholar

show all references

References:
[1]

H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations,, Nonlinear Anal., 4 (1980), 677. doi: 10.1016/0362-546X(80)90068-1. Google Scholar

[2]

V. Chepyzhov and M. Vishik, "Attractors for Equations of Mathematical Physics,", Amer. Math. Soc. Colloq. Publ. 49, 49 (2002). Google Scholar

[3]

B. Climent-Ezquerra, F. Guillen-González and M. Rojas-Medar, Reproductivity for a nematic liquid crystal model,, Z. Angew. Math. Phys. ZAMP, 71 (2006), 984. doi: 10.1007/s00033-005-0038-1. Google Scholar

[4]

B. Climent-Ezquerra, F. Guillen-González and M. Moreno-Iraberte, Regularity and time-periodicity for a nematic liquid crystal model,, Nonlinear Anal., 71 (2009), 530. doi: 10.1016/j.na.2008.10.092. Google Scholar

[5]

P. De Gennes and J. Prost, "The Physics of Liquid Crystals,", 2nd edition, (1993). Google Scholar

[6]

K. Deimling, "Nonlinear Functional Analysis,", Springer-Verlag, (1985). Google Scholar

[7]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, "Exponential Attractors for Dissipative Evolution Equations,", Research in Applied Mathematics, (1994). Google Scholar

[8]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $R^3$,, C. R. Acad. Sci. Paris, 330 (2000), 713. Google Scholar

[9]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems,, Proc. Roy. Soc. Edinburgh, 135 (2005), 703. Google Scholar

[10]

L. Evans, "Partial Differential Equations,", Grad. Stud. Math. 19, 19 (1998). Google Scholar

[11]

J. Fan and T. Ozawa, Regularity criteria for a simplified Ericksen-Leslie system modelling the flow of liquid crystals,, Discrete Contin. Dyn. Syst., 25 (2009), 859. doi: 10.3934/dcds.2009.25.859. Google Scholar

[12]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", 2nd edition, (1983). Google Scholar

[13]

F. Guillén-González and M. Rojas-Medar, Global solution of nematic liquid crystals models,, C. R. Acad. Sci. Paris, 335 (2002), 1085. Google Scholar

[14]

F. Guillén-González, M. Rodríguez-Bellido and M. Rojas-Medar, Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model,, Math. Nachr., 282 (2009), 846. doi: 10.1002/mana.200610776. Google Scholar

[15]

X. Hu and D. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals,, Commun. Math. Phys., 296 (2010), 861. doi: 10.1007/s00220-010-1017-8. Google Scholar

[16]

F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transitions and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789. doi: 10.1002/cpa.3160420605. Google Scholar

[17]

F. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions,, Arch. Ration. Mech. Anal., 197 (2010), 297. doi: 10.1007/s00205-009-0278-x. Google Scholar

[18]

F. Lin and C. Liu, Nonparabolic dissipative systems modelling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501. doi: 10.1002/cpa.3160480503. Google Scholar

[19]

J.-L. Lions and E. Magenes, "Problèmes aux limites non homogènes et applications,", Volume 1, (1968). Google Scholar

[20]

C. Liu and J. Shen, On liquid crystal flows with free-slip boundary conditions,, Discrete Contin. Dyn. Syst., 7 (2001), 307. doi: 10.3934/dcds.2001.7.307. Google Scholar

[21]

S. Lu, H. Wu and C. Zhong, Attractors for nonautomous 2D Navier-Stokes equations with normal external forces,, Discrete Contin. Dyn. Syst., 13 (2005), 701. doi: 10.3934/dcds.2005.13.701. Google Scholar

[22]

S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces,, J. Differential Equations, 230 (2006), 196. doi: 10.1016/j.jde.2006.07.009. Google Scholar

[23]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in, (2008), 103. doi: 10.1016/S1874-5717(08)00003-0. Google Scholar

[24]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains,, Nonlinear Anal., 32 (1998), 71. doi: 10.1016/S0362-546X(97)00453-7. Google Scholar

[25]

S. Shkoller, Well-posedness and global attractors for liquid crystals on Riemannian manifolds,, Comm. Partial Differential Equations, 27 (2002), 1103. doi: 10.1081/PDE-120004895. Google Scholar

[26]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

[27]

I. Stewart, "The Static and Dynamic Continuum Theory of Liquid Crystals, A Mathematical Introduction,", Taylor & Francis, (2004). Google Scholar

[28]

H. Sun and C. Liu, On energetic variational approaches in modelling the nematic liquid crystal flows,, Discrete Contin. Dyn. Syst., 23 (2009), 455. doi: 10.3934/dcds.2009.23.455. Google Scholar

[29]

L. Tartar, "An Introduction to Sobolev Spaces and Interpolation Spaces,", Springer Verlag, (2007). Google Scholar

[30]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,", 2nd edition, 68 (1997). Google Scholar

[31]

R. Temam, "Navier-Stokes Equations: Theory and Numerical Analysis,", Reprint of the 1984 edition, (1984). Google Scholar

[32]

E. Virga, "Variational Theories for Liquid Crystals,", Applied Mathematics and Mathematical Computations, 8 (1994). Google Scholar

[33]

H. Wu, Long-time behaviour for a nonlinear hydrodynamic system modelling the nematic liquid crystal flows,, Discrete Contin. Dyn. Syst., 20 (2010), 379. Google Scholar

[34]

H. Wu, X. Xu and C. Liu, Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties,, preprint, (). Google Scholar

[1]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[2]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[3]

Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 55-80. doi: 10.3934/dcdsb.2019172

[4]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure & Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[5]

V. V. Chepyzhov, M. I. Vishik, W. L. Wendland. On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 27-38. doi: 10.3934/dcds.2005.12.27

[6]

T. Tachim Medjo. Non-autonomous 3D primitive equations with oscillating external force and its global attractor. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 265-291. doi: 10.3934/dcds.2012.32.265

[7]

Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1611-1631. doi: 10.3934/dcds.2010.27.1611

[8]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[9]

Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95

[10]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[11]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[12]

Alexandre N. Carvalho, José A. Langa, James C. Robinson. Non-autonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 703-747. doi: 10.3934/dcdsb.2015.20.703

[13]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120

[14]

José A. Langa, James C. Robinson, Aníbal Rodríguez-Bernal, A. Suárez, A. Vidal-López. Existence and nonexistence of unbounded forwards attractor for a class of non-autonomous reaction diffusion equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 483-497. doi: 10.3934/dcds.2007.18.483

[15]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[16]

Xiaolin Jia, Caidi Zhao, Juan Cao. Uniform attractor of the non-autonomous discrete Selkov model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 229-248. doi: 10.3934/dcds.2014.34.229

[17]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[18]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[19]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[20]

Alexei Ilyin, Kavita Patni, Sergey Zelik. Upper bounds for the attractor dimension of damped Navier-Stokes equations in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2085-2102. doi: 10.3934/dcds.2016.36.2085

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]