-
Previous Article
Lyapunov-type inequalities for even order differential equations
- CPAA Home
- This Issue
-
Next Article
Regularity criterion of the Newton-Boussinesq equations in $R^3$
Solutions for polyharmonic elliptic problems with critical nonlinearities in symmetric domains
1. | Center for Nonlinear Studies, Northwest University, Xi'an, Shaanxi, 710069, China |
2. | Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China |
References:
[1] |
H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.
doi: 10.1002/cpa.3160360405. |
[2] |
O. Rey, A multiplicity result for a variational problem with lack of compactness,, Nonl. Anal., 133 (1989), 1241.
doi: 10.1016/0362-546X(89)90009-6. |
[3] |
M. Lazzo, Solutions positives multiples pour une équation elliptique non linéaire avec l'exposant critique de Sobolev,, C. R. Acad. Sci. Paris S\'erie. I, 314 (1992), 61.
|
[4] |
G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents,, J. Funct. Anal., 69 (1986), 289.
doi: 10.1016/0022-1236(86)90094-7. |
[5] |
A. Castro and M. Clapp, The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain,, Nonlinearity, 16 (2003), 579.
doi: 10.1088/0951-7715/16/2/313. |
[6] |
A. Cano and M. Clapp, Multiple positive and 2-nodal symmetric solutions of elliptic problems with critical nonlinearity,, J. Diff. Eqs., 237 (2007), 133.
doi: 10.1016/j.jde.2007.03.002. |
[7] |
P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators,, J. Math. Pures Appl., 69 (1990), 55.
|
[8] |
P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681.
doi: 10.1512/iumj.1986.35.35036. |
[9] |
F. Gazzola, Critical growth problems for polyharmonic operators,, Proc. Roy. Soc. Edinburgh, 128A (1998), 251.
|
[10] |
H. Grunau, The Dirichlet problem for some semilinear elliptic differential equations of arbitrary order,, Analysis, 11 (1991), 83.
doi: 10.1080/03605309508821090. |
[11] |
H. Grunau, Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponents,, Calc. Var. PDE., 3 (1995), 243.
doi: 10.1007/BF01205006. |
[12] |
C. A. Swanson, The best Sobolev constant,, Applicable Anal., 47 (1992), 227.
doi: 10.1080/00036819208840142. |
[13] |
M. Clapp and M. Squassina, Nonhomogeneous polyharmonic elliptic problems at critical growth with symmetric data,, Comm. Pure Appl.Anal., 2 (2003), 171.
doi: 10.3934/cpaa.2003.2.171. |
[14] |
Q. Guo and P. Niu, Nodal and positive solutions for singular semilinear elliptic equations with critical exponents in symmetric domains,, J. Diff. Eqs., 245 (2008), 3974.
doi: 10.1016/j.jde.2008.08.002. |
[15] |
M. Clapp, A global compactness result for elliptic problems with critical nonlinearity on symmetric domains,, Nonlinear Equations: Methods, (2003), 117.
|
[16] |
D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities,, Trans. Amer. Math. Soc., 357 (2005), 2909.
doi: 10.1090/S0002-9947-04-03769-9. |
[17] |
M. Struwe, "Variational Methods,", Springer-Verlag, (1996).
doi: 10.1007/978-3-540-74013-1. |
[18] |
H. Grunau and G. Sweers, Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions,, Math. Ann., 307 (1997), 589.
doi: 10.1007/s002080050052. |
[19] |
F. Gazzola, H. Grunau and G. Sweers, "Polyharmonic Boundary Value Problems,", Springer, (2009), 305.
doi: 10.1007/978-3-642-12245-3. |
show all references
References:
[1] |
H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.
doi: 10.1002/cpa.3160360405. |
[2] |
O. Rey, A multiplicity result for a variational problem with lack of compactness,, Nonl. Anal., 133 (1989), 1241.
doi: 10.1016/0362-546X(89)90009-6. |
[3] |
M. Lazzo, Solutions positives multiples pour une équation elliptique non linéaire avec l'exposant critique de Sobolev,, C. R. Acad. Sci. Paris S\'erie. I, 314 (1992), 61.
|
[4] |
G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents,, J. Funct. Anal., 69 (1986), 289.
doi: 10.1016/0022-1236(86)90094-7. |
[5] |
A. Castro and M. Clapp, The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain,, Nonlinearity, 16 (2003), 579.
doi: 10.1088/0951-7715/16/2/313. |
[6] |
A. Cano and M. Clapp, Multiple positive and 2-nodal symmetric solutions of elliptic problems with critical nonlinearity,, J. Diff. Eqs., 237 (2007), 133.
doi: 10.1016/j.jde.2007.03.002. |
[7] |
P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators,, J. Math. Pures Appl., 69 (1990), 55.
|
[8] |
P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681.
doi: 10.1512/iumj.1986.35.35036. |
[9] |
F. Gazzola, Critical growth problems for polyharmonic operators,, Proc. Roy. Soc. Edinburgh, 128A (1998), 251.
|
[10] |
H. Grunau, The Dirichlet problem for some semilinear elliptic differential equations of arbitrary order,, Analysis, 11 (1991), 83.
doi: 10.1080/03605309508821090. |
[11] |
H. Grunau, Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponents,, Calc. Var. PDE., 3 (1995), 243.
doi: 10.1007/BF01205006. |
[12] |
C. A. Swanson, The best Sobolev constant,, Applicable Anal., 47 (1992), 227.
doi: 10.1080/00036819208840142. |
[13] |
M. Clapp and M. Squassina, Nonhomogeneous polyharmonic elliptic problems at critical growth with symmetric data,, Comm. Pure Appl.Anal., 2 (2003), 171.
doi: 10.3934/cpaa.2003.2.171. |
[14] |
Q. Guo and P. Niu, Nodal and positive solutions for singular semilinear elliptic equations with critical exponents in symmetric domains,, J. Diff. Eqs., 245 (2008), 3974.
doi: 10.1016/j.jde.2008.08.002. |
[15] |
M. Clapp, A global compactness result for elliptic problems with critical nonlinearity on symmetric domains,, Nonlinear Equations: Methods, (2003), 117.
|
[16] |
D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities,, Trans. Amer. Math. Soc., 357 (2005), 2909.
doi: 10.1090/S0002-9947-04-03769-9. |
[17] |
M. Struwe, "Variational Methods,", Springer-Verlag, (1996).
doi: 10.1007/978-3-540-74013-1. |
[18] |
H. Grunau and G. Sweers, Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions,, Math. Ann., 307 (1997), 589.
doi: 10.1007/s002080050052. |
[19] |
F. Gazzola, H. Grunau and G. Sweers, "Polyharmonic Boundary Value Problems,", Springer, (2009), 305.
doi: 10.1007/978-3-642-12245-3. |
[1] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[2] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[3] |
Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283 |
[4] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286 |
[5] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[6] |
Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125 |
[7] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[8] |
Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227 |
[9] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[10] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[11] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[12] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280 |
[13] |
Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048 |
[14] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[15] |
Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250 |
[16] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[17] |
Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260 |
[18] |
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365 |
[19] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[20] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]