March  2012, 11(2): 453-464. doi: 10.3934/cpaa.2012.11.453

Solutions for polyharmonic elliptic problems with critical nonlinearities in symmetric domains

1. 

Center for Nonlinear Studies, Northwest University, Xi'an, Shaanxi, 710069, China

2. 

Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China

Received  January 2010 Revised  May 2011 Published  October 2011

Consider the polyharmonic elliptic problem \begin{eqnarray*} (-\Delta)^m u=\lambda u+Q(x)|u|^{2^*-2}u & in \Omega, \\ (\frac{\partial}{\partial\nu })^j u |_{\partial\Omega}=0, j=0, 1, 2, \cdots, m-1,& \end{eqnarray*} where $\Omega$ is an open bounded domain with smooth boundary in $R^N$, $m\geq 1,N>2m, 2^*=\frac{2N}{N-2m}$ is the critical Sobolev exponent, $Q(x)$ is positive and continuous in $\overline{\Omega}$. We prove the existence of nontrivial and sign-changing solutions when $\Omega$, $Q(x)$ are invariant under a group of orthogonal transformations and $0 < \lambda < \lambda_1$, where $\lambda_1$ is the first Dirichlet eigenvalue of $(-\Delta)^m$ in $\Omega$.
Citation: Jingbo Dou, Qianqiao Guo. Solutions for polyharmonic elliptic problems with critical nonlinearities in symmetric domains. Communications on Pure & Applied Analysis, 2012, 11 (2) : 453-464. doi: 10.3934/cpaa.2012.11.453
References:
[1]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[2]

O. Rey, A multiplicity result for a variational problem with lack of compactness,, Nonl. Anal., 133 (1989), 1241.  doi: 10.1016/0362-546X(89)90009-6.  Google Scholar

[3]

M. Lazzo, Solutions positives multiples pour une équation elliptique non linéaire avec l'exposant critique de Sobolev,, C. R. Acad. Sci. Paris S\'erie. I, 314 (1992), 61.   Google Scholar

[4]

G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents,, J. Funct. Anal., 69 (1986), 289.  doi: 10.1016/0022-1236(86)90094-7.  Google Scholar

[5]

A. Castro and M. Clapp, The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain,, Nonlinearity, 16 (2003), 579.  doi: 10.1088/0951-7715/16/2/313.  Google Scholar

[6]

A. Cano and M. Clapp, Multiple positive and 2-nodal symmetric solutions of elliptic problems with critical nonlinearity,, J. Diff. Eqs., 237 (2007), 133.  doi: 10.1016/j.jde.2007.03.002.  Google Scholar

[7]

P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators,, J. Math. Pures Appl., 69 (1990), 55.   Google Scholar

[8]

P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[9]

F. Gazzola, Critical growth problems for polyharmonic operators,, Proc. Roy. Soc. Edinburgh, 128A (1998), 251.   Google Scholar

[10]

H. Grunau, The Dirichlet problem for some semilinear elliptic differential equations of arbitrary order,, Analysis, 11 (1991), 83.  doi: 10.1080/03605309508821090.  Google Scholar

[11]

H. Grunau, Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponents,, Calc. Var. PDE., 3 (1995), 243.  doi: 10.1007/BF01205006.  Google Scholar

[12]

C. A. Swanson, The best Sobolev constant,, Applicable Anal., 47 (1992), 227.  doi: 10.1080/00036819208840142.  Google Scholar

[13]

M. Clapp and M. Squassina, Nonhomogeneous polyharmonic elliptic problems at critical growth with symmetric data,, Comm. Pure Appl.Anal., 2 (2003), 171.  doi: 10.3934/cpaa.2003.2.171.  Google Scholar

[14]

Q. Guo and P. Niu, Nodal and positive solutions for singular semilinear elliptic equations with critical exponents in symmetric domains,, J. Diff. Eqs., 245 (2008), 3974.  doi: 10.1016/j.jde.2008.08.002.  Google Scholar

[15]

M. Clapp, A global compactness result for elliptic problems with critical nonlinearity on symmetric domains,, Nonlinear Equations: Methods, (2003), 117.   Google Scholar

[16]

D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities,, Trans. Amer. Math. Soc., 357 (2005), 2909.  doi: 10.1090/S0002-9947-04-03769-9.  Google Scholar

[17]

M. Struwe, "Variational Methods,", Springer-Verlag, (1996).  doi: 10.1007/978-3-540-74013-1.  Google Scholar

[18]

H. Grunau and G. Sweers, Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions,, Math. Ann., 307 (1997), 589.  doi: 10.1007/s002080050052.  Google Scholar

[19]

F. Gazzola, H. Grunau and G. Sweers, "Polyharmonic Boundary Value Problems,", Springer, (2009), 305.  doi: 10.1007/978-3-642-12245-3.  Google Scholar

show all references

References:
[1]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[2]

O. Rey, A multiplicity result for a variational problem with lack of compactness,, Nonl. Anal., 133 (1989), 1241.  doi: 10.1016/0362-546X(89)90009-6.  Google Scholar

[3]

M. Lazzo, Solutions positives multiples pour une équation elliptique non linéaire avec l'exposant critique de Sobolev,, C. R. Acad. Sci. Paris S\'erie. I, 314 (1992), 61.   Google Scholar

[4]

G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents,, J. Funct. Anal., 69 (1986), 289.  doi: 10.1016/0022-1236(86)90094-7.  Google Scholar

[5]

A. Castro and M. Clapp, The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain,, Nonlinearity, 16 (2003), 579.  doi: 10.1088/0951-7715/16/2/313.  Google Scholar

[6]

A. Cano and M. Clapp, Multiple positive and 2-nodal symmetric solutions of elliptic problems with critical nonlinearity,, J. Diff. Eqs., 237 (2007), 133.  doi: 10.1016/j.jde.2007.03.002.  Google Scholar

[7]

P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators,, J. Math. Pures Appl., 69 (1990), 55.   Google Scholar

[8]

P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[9]

F. Gazzola, Critical growth problems for polyharmonic operators,, Proc. Roy. Soc. Edinburgh, 128A (1998), 251.   Google Scholar

[10]

H. Grunau, The Dirichlet problem for some semilinear elliptic differential equations of arbitrary order,, Analysis, 11 (1991), 83.  doi: 10.1080/03605309508821090.  Google Scholar

[11]

H. Grunau, Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponents,, Calc. Var. PDE., 3 (1995), 243.  doi: 10.1007/BF01205006.  Google Scholar

[12]

C. A. Swanson, The best Sobolev constant,, Applicable Anal., 47 (1992), 227.  doi: 10.1080/00036819208840142.  Google Scholar

[13]

M. Clapp and M. Squassina, Nonhomogeneous polyharmonic elliptic problems at critical growth with symmetric data,, Comm. Pure Appl.Anal., 2 (2003), 171.  doi: 10.3934/cpaa.2003.2.171.  Google Scholar

[14]

Q. Guo and P. Niu, Nodal and positive solutions for singular semilinear elliptic equations with critical exponents in symmetric domains,, J. Diff. Eqs., 245 (2008), 3974.  doi: 10.1016/j.jde.2008.08.002.  Google Scholar

[15]

M. Clapp, A global compactness result for elliptic problems with critical nonlinearity on symmetric domains,, Nonlinear Equations: Methods, (2003), 117.   Google Scholar

[16]

D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities,, Trans. Amer. Math. Soc., 357 (2005), 2909.  doi: 10.1090/S0002-9947-04-03769-9.  Google Scholar

[17]

M. Struwe, "Variational Methods,", Springer-Verlag, (1996).  doi: 10.1007/978-3-540-74013-1.  Google Scholar

[18]

H. Grunau and G. Sweers, Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions,, Math. Ann., 307 (1997), 589.  doi: 10.1007/s002080050052.  Google Scholar

[19]

F. Gazzola, H. Grunau and G. Sweers, "Polyharmonic Boundary Value Problems,", Springer, (2009), 305.  doi: 10.1007/978-3-642-12245-3.  Google Scholar

[1]

Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357

[2]

Mónica Clapp, Marco Squassina. Nonhomogeneous polyharmonic elliptic problems at critical growth with symmetric data. Communications on Pure & Applied Analysis, 2003, 2 (2) : 171-186. doi: 10.3934/cpaa.2003.2.171

[3]

M. L. Miotto. Multiple solutions for elliptic problem in $\mathbb{R}^N$ with critical Sobolev exponent and weight function. Communications on Pure & Applied Analysis, 2010, 9 (1) : 233-248. doi: 10.3934/cpaa.2010.9.233

[4]

Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907

[5]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

[6]

M. Ben Ayed, Abdelbaki Selmi. Asymptotic behavior and existence results for a biharmonic equation involving the critical Sobolev exponent in a five-dimensional domain. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1705-1722. doi: 10.3934/cpaa.2010.9.1705

[7]

Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033

[8]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[9]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[10]

T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875

[11]

Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007

[12]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[13]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[14]

Chunhua Wang, Jing Yang. Infinitely many solutions for an elliptic problem with double critical Hardy-Sobolev-Maz'ya terms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1603-1628. doi: 10.3934/dcds.2016.36.1603

[15]

Liping Wang, Dong Ye. Concentrating solutions for an anisotropic elliptic problem with large exponent. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3771-3797. doi: 10.3934/dcds.2015.35.3771

[16]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[17]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[18]

Yavdat Il'yasov. On critical exponent for an elliptic equation with non-Lipschitz nonlinearity. Conference Publications, 2011, 2011 (Special) : 698-706. doi: 10.3934/proc.2011.2011.698

[19]

Y. Kabeya. Behaviors of solutions to a scalar-field equation involving the critical Sobolev exponent with the Robin condition. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 117-134. doi: 10.3934/dcds.2006.14.117

[20]

Michinori Ishiwata. Existence of a stable set for some nonlinear parabolic equation involving critical Sobolev exponent. Conference Publications, 2005, 2005 (Special) : 443-452. doi: 10.3934/proc.2005.2005.443

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]