March  2012, 11(2): 453-464. doi: 10.3934/cpaa.2012.11.453

Solutions for polyharmonic elliptic problems with critical nonlinearities in symmetric domains

1. 

Center for Nonlinear Studies, Northwest University, Xi'an, Shaanxi, 710069, China

2. 

Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China

Received  January 2010 Revised  May 2011 Published  October 2011

Consider the polyharmonic elliptic problem \begin{eqnarray*} (-\Delta)^m u=\lambda u+Q(x)|u|^{2^*-2}u & in \Omega, \\ (\frac{\partial}{\partial\nu })^j u |_{\partial\Omega}=0, j=0, 1, 2, \cdots, m-1,& \end{eqnarray*} where $\Omega$ is an open bounded domain with smooth boundary in $R^N$, $m\geq 1,N>2m, 2^*=\frac{2N}{N-2m}$ is the critical Sobolev exponent, $Q(x)$ is positive and continuous in $\overline{\Omega}$. We prove the existence of nontrivial and sign-changing solutions when $\Omega$, $Q(x)$ are invariant under a group of orthogonal transformations and $0 < \lambda < \lambda_1$, where $\lambda_1$ is the first Dirichlet eigenvalue of $(-\Delta)^m$ in $\Omega$.
Citation: Jingbo Dou, Qianqiao Guo. Solutions for polyharmonic elliptic problems with critical nonlinearities in symmetric domains. Communications on Pure & Applied Analysis, 2012, 11 (2) : 453-464. doi: 10.3934/cpaa.2012.11.453
References:
[1]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[2]

O. Rey, A multiplicity result for a variational problem with lack of compactness,, Nonl. Anal., 133 (1989), 1241.  doi: 10.1016/0362-546X(89)90009-6.  Google Scholar

[3]

M. Lazzo, Solutions positives multiples pour une équation elliptique non linéaire avec l'exposant critique de Sobolev,, C. R. Acad. Sci. Paris S\'erie. I, 314 (1992), 61.   Google Scholar

[4]

G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents,, J. Funct. Anal., 69 (1986), 289.  doi: 10.1016/0022-1236(86)90094-7.  Google Scholar

[5]

A. Castro and M. Clapp, The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain,, Nonlinearity, 16 (2003), 579.  doi: 10.1088/0951-7715/16/2/313.  Google Scholar

[6]

A. Cano and M. Clapp, Multiple positive and 2-nodal symmetric solutions of elliptic problems with critical nonlinearity,, J. Diff. Eqs., 237 (2007), 133.  doi: 10.1016/j.jde.2007.03.002.  Google Scholar

[7]

P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators,, J. Math. Pures Appl., 69 (1990), 55.   Google Scholar

[8]

P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[9]

F. Gazzola, Critical growth problems for polyharmonic operators,, Proc. Roy. Soc. Edinburgh, 128A (1998), 251.   Google Scholar

[10]

H. Grunau, The Dirichlet problem for some semilinear elliptic differential equations of arbitrary order,, Analysis, 11 (1991), 83.  doi: 10.1080/03605309508821090.  Google Scholar

[11]

H. Grunau, Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponents,, Calc. Var. PDE., 3 (1995), 243.  doi: 10.1007/BF01205006.  Google Scholar

[12]

C. A. Swanson, The best Sobolev constant,, Applicable Anal., 47 (1992), 227.  doi: 10.1080/00036819208840142.  Google Scholar

[13]

M. Clapp and M. Squassina, Nonhomogeneous polyharmonic elliptic problems at critical growth with symmetric data,, Comm. Pure Appl.Anal., 2 (2003), 171.  doi: 10.3934/cpaa.2003.2.171.  Google Scholar

[14]

Q. Guo and P. Niu, Nodal and positive solutions for singular semilinear elliptic equations with critical exponents in symmetric domains,, J. Diff. Eqs., 245 (2008), 3974.  doi: 10.1016/j.jde.2008.08.002.  Google Scholar

[15]

M. Clapp, A global compactness result for elliptic problems with critical nonlinearity on symmetric domains,, Nonlinear Equations: Methods, (2003), 117.   Google Scholar

[16]

D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities,, Trans. Amer. Math. Soc., 357 (2005), 2909.  doi: 10.1090/S0002-9947-04-03769-9.  Google Scholar

[17]

M. Struwe, "Variational Methods,", Springer-Verlag, (1996).  doi: 10.1007/978-3-540-74013-1.  Google Scholar

[18]

H. Grunau and G. Sweers, Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions,, Math. Ann., 307 (1997), 589.  doi: 10.1007/s002080050052.  Google Scholar

[19]

F. Gazzola, H. Grunau and G. Sweers, "Polyharmonic Boundary Value Problems,", Springer, (2009), 305.  doi: 10.1007/978-3-642-12245-3.  Google Scholar

show all references

References:
[1]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[2]

O. Rey, A multiplicity result for a variational problem with lack of compactness,, Nonl. Anal., 133 (1989), 1241.  doi: 10.1016/0362-546X(89)90009-6.  Google Scholar

[3]

M. Lazzo, Solutions positives multiples pour une équation elliptique non linéaire avec l'exposant critique de Sobolev,, C. R. Acad. Sci. Paris S\'erie. I, 314 (1992), 61.   Google Scholar

[4]

G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents,, J. Funct. Anal., 69 (1986), 289.  doi: 10.1016/0022-1236(86)90094-7.  Google Scholar

[5]

A. Castro and M. Clapp, The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain,, Nonlinearity, 16 (2003), 579.  doi: 10.1088/0951-7715/16/2/313.  Google Scholar

[6]

A. Cano and M. Clapp, Multiple positive and 2-nodal symmetric solutions of elliptic problems with critical nonlinearity,, J. Diff. Eqs., 237 (2007), 133.  doi: 10.1016/j.jde.2007.03.002.  Google Scholar

[7]

P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators,, J. Math. Pures Appl., 69 (1990), 55.   Google Scholar

[8]

P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[9]

F. Gazzola, Critical growth problems for polyharmonic operators,, Proc. Roy. Soc. Edinburgh, 128A (1998), 251.   Google Scholar

[10]

H. Grunau, The Dirichlet problem for some semilinear elliptic differential equations of arbitrary order,, Analysis, 11 (1991), 83.  doi: 10.1080/03605309508821090.  Google Scholar

[11]

H. Grunau, Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponents,, Calc. Var. PDE., 3 (1995), 243.  doi: 10.1007/BF01205006.  Google Scholar

[12]

C. A. Swanson, The best Sobolev constant,, Applicable Anal., 47 (1992), 227.  doi: 10.1080/00036819208840142.  Google Scholar

[13]

M. Clapp and M. Squassina, Nonhomogeneous polyharmonic elliptic problems at critical growth with symmetric data,, Comm. Pure Appl.Anal., 2 (2003), 171.  doi: 10.3934/cpaa.2003.2.171.  Google Scholar

[14]

Q. Guo and P. Niu, Nodal and positive solutions for singular semilinear elliptic equations with critical exponents in symmetric domains,, J. Diff. Eqs., 245 (2008), 3974.  doi: 10.1016/j.jde.2008.08.002.  Google Scholar

[15]

M. Clapp, A global compactness result for elliptic problems with critical nonlinearity on symmetric domains,, Nonlinear Equations: Methods, (2003), 117.   Google Scholar

[16]

D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities,, Trans. Amer. Math. Soc., 357 (2005), 2909.  doi: 10.1090/S0002-9947-04-03769-9.  Google Scholar

[17]

M. Struwe, "Variational Methods,", Springer-Verlag, (1996).  doi: 10.1007/978-3-540-74013-1.  Google Scholar

[18]

H. Grunau and G. Sweers, Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions,, Math. Ann., 307 (1997), 589.  doi: 10.1007/s002080050052.  Google Scholar

[19]

F. Gazzola, H. Grunau and G. Sweers, "Polyharmonic Boundary Value Problems,", Springer, (2009), 305.  doi: 10.1007/978-3-642-12245-3.  Google Scholar

[1]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[2]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[3]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[4]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[5]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[6]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[7]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[8]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[9]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[10]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[11]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[12]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[13]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

[14]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[15]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[16]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[17]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[18]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[19]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[20]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]