Citation: |
[1] |
A. Blanchet, E. Carlen and J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, preprint, arXiv:1009.0134. |
[2] |
A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical two-dimensional Patlak-Keller-Segel model, Comm. Pure Appl. Math., 61 (2008), 1449-1481. |
[3] |
A. Blanchet, J. A. Carrillo and Ph. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168. |
[4] |
A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, 44 (2006), 32 pp. (electronic). |
[5] |
P.-H. Chavanis and C. Sire, Anomalous diffusion and collapse of self-gravitating Langevin particles in $D$ dimensions, Phys. Rev. E, 69 (2004), 016116. |
[6] |
J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in $R^2$, C. R. Math. Acad. Sci. Paris, 339 (2004), 611-616. |
[7] |
P. L. Felmer, A. Quaas, M. Tang and J. Yu, Monotonicity properties for ground states of the scalar field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 105-119. |
[8] |
R. H. Fowler, Further studies of Emden's and similar differential equations, Quart. J. Math., 2 (1931), 259-288. |
[9] |
M. A. Herrero, E. Medina and J. J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system, Nonlinearity, 10 (1997), 1739-1754. |
[10] |
M. A. Herrero and J. J. L. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann., 306 (1996), 583-623. |
[11] |
D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165. |
[12] |
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824. |
[13] |
E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. |
[14] |
M. K. Kwong, Uniqueness of positive solutions of $\Delta u - u + u^p=0$ in $R^N$, Arch. Rational Mech. Anal., 105 (1989), 243-266. |
[15] |
E. H. Lieb and M. Loss, "Analysis,'' Graduate Studies in Mathematics 14, American Mathematical Society, Providence, RI, second ed., 2001. |
[16] |
P. M. Lushnikov, Critical chemotactic collapse, Phys. Lett. A, 374 (2010), 1678-1685. |
[17] |
T. Nagai, Behavior of solutions to a parabolic-elliptic system modelling chemotaxis, J. Korean Math. Soc., 37 (2000), 721-733. |
[18] |
Y. Naito and T. Suzuki, Self-similarity in chemotaxis systems, Colloq. Math., 111 (2008), 11-34. |
[19] |
C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338. |
[20] |
J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J., 49 (2000), 897-923. |
[21] |
C. Sire and P.-H. Chavanis, Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions, Phys. Rev. E, 66 (2002), 046133. |
[22] |
C. Sire and P.-H. Chavanis, Critical dynamics of self-gravitating Langevin particles and bacterial populations, Phys. Rev. E, 78 (2008), 061111. |
[23] |
D. Slepčev and M. C. Pugh, Selfsimilar blowup of unstable thin-film equations, Indiana Univ. Math. J., 54 (2005), 1697-1738. |
[24] |
Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, Differential Integral Equations, 19 (2006), 841-876. |
[25] |
Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models, Adv. Differential Equations, 12 (2007), 121-144. |
[26] |
T. Suzuki and R. Takahashi, Degenerate parabolic equation with critical exponent derived from the kinetic theory, I, generation of the weak solution, Adv. Differential Equations, 14 (2009), 433-476. |
[27] |
M. Tang, Uniqueness of positive radial solutions for $\Delta u - u + u^p=0$ on an annulus, J. Differential Equations, 189 (2003), 148-160. |