March  2012, 11(2): 475-500. doi: 10.3934/cpaa.2012.11.475

Best asymptotic profile for the system of compressible adiabatic flow through porous media on quadrant

1. 

School of Mathematics and Computational Science, Xiangtan University, Hunan 411105, China

2. 

Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan 430071, China

Received  August 2010 Revised  January 2011 Published  October 2011

We realize the best asymptotic profile for the solutions to the nonisentropic $p$-system with damping on quadrant is a particular solution of the IBVP for the corresponding nonlinear parabolic equation with special initial data, and we further show the convergence rates to this particular asymptotic profile. This rates are same to that for the isentropic case obtained by H. Ma and M. Mei (J. Differential Equations 249 (2010), 446--484).
Citation: Shifeng Geng, Zhen Wang. Best asymptotic profile for the system of compressible adiabatic flow through porous media on quadrant. Communications on Pure and Applied Analysis, 2012, 11 (2) : 475-500. doi: 10.3934/cpaa.2012.11.475
References:
[1]

S. Geng and Z. Wang, Convergence rates to nonlinear diffusion waves for solutions to the system of compressible adiabatic flow through porous media, Comm. Partial Differential Equations, 36 (2011), 850-872. doi: 10.1080/03605302.2010.520052.

[2]

L. Hsiao and T.-P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., 143 (1992), 599-605. doi: 10.1007/BF02099268.

[3]

L. Hsiao and T. Luo, Nonlinear diffusive phenomena of solutions for the system of compressible adiabatic flow through porous media, J. Differential Equations, 125 (1996), 329-365. doi: 10.1006/jdeq.1996.0034.

[4]

L. Hsiao and D. Serre, Large-time behavior of solutions for the system of compressible adiabatic flow through porous media, Chinese Ann. Math. Ser. B, 16 (1995), 431-444.

[5]

L. Hsiao and D. Serre, Global existence of solutions for the system of compressible adiabatic flow through porous media, SIAM J. Math. Anal., 27 (1996), 70-77. doi: 10.1137/S0036141094267078.

[6]

H. Ma and M. Mei, Best asymptotic profile for linear damped $p$-system with boundary effect, J. Differential Equations, 249 (2010), 446-484. doi: 10.1016/j.jde.2010.04.008.

[7]

P. Marcati, M. Mei and B. Rubino, Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping, J. Math. Fluid Mech., 7 (2005), S224-S240. doi: 10.1007/s00021-005-0155-9.

[8]

P. Marcati and K. Nishihara, The $L^p$-$L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differential Equations, 191 (2003), 445-469. doi: 10.1016/S0022-0396(03)00026-3.

[9]

P. Marcati and R. Pan, On the diffusive profiles for the system of compressible adiabatic flow through porous media, SIAM J. Math. Anal., 33 (2001), 790-826. doi: 10.1137/S0036141099364401.

[10]

A. Matsumura, Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equations with the first-order dissipation,, Publ. Res. Inst. Math. Sci., 13 (): 349.  doi: 10.2977/prims/1195189813.

[11]

M. Mei, Best asymptotic profile for hyperbolic $p$-system with damping, SIAM J. Math. Anal., 42 (2010), 1-23. doi: 10.1137/090756594.

[12]

K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping, J. Differential Equations, 131 (1996), 171-188. doi: 10.1006/jdeq.1996.0159.

[13]

K. Nishihara, Asymptotics toward the diffusion wave for a one-dimensional compressible flow through porous media, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 177-196. doi: 10.1017/S0308210500002341.

[14]

K. Nishihara and M. Nishikawa, Asymptotic behavior of solutions to the system of compressible adiabatic flow through porous media, SIAM J. Math. Anal., 33 (2001), 216-239. doi: 10.1137/S003614109936467X.

[15]

K. Nishihara, W. Wang and T. Yang, $L^p$-convergence rate to nonlinear diffusion waves for $p$-system with damping, J. Differential Equations, 161 (2000), 191-218. doi: 10.1006/jdeq.1999.3703.

[16]

R. Pan, Boundary effects and large time behavior for the system of compressible adiabatic flow through porous media, Michigan Math. J., 49 (2001), 519-540. doi: 10.1307/mmj/1012409969.

[17]

R. Pan, Darcy's law as long-time limit of adiabatic porous media flow, J. Differential Equations, 220 (2006), 121-146. doi: 10.1016/j.jde.2004.10.013.

[18]

B. Said-Houari, Convergence to strong nonlinear diffusion waves for solutions to $p$-system with damping, J. Differential Equations, 247 (2009), 917-930. doi: 10.1016/j.jde.2009.04.011.

[19]

H. Zhao, Convergence to strong nonlinear diffusion waves for solutions of $p$-system with damping, J. Differential Equations, 174 (2001), 200-236. doi: 10.1006/jdeq.2000.3936.

[20]

C. Zhu, Convergence rates to nonlinear diffusion waves for weak entropy solutions to $p$-system with damping, Sci. China Ser. A, 46 (2003), 562-575. doi: 10.1007/BF02884028.

show all references

References:
[1]

S. Geng and Z. Wang, Convergence rates to nonlinear diffusion waves for solutions to the system of compressible adiabatic flow through porous media, Comm. Partial Differential Equations, 36 (2011), 850-872. doi: 10.1080/03605302.2010.520052.

[2]

L. Hsiao and T.-P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., 143 (1992), 599-605. doi: 10.1007/BF02099268.

[3]

L. Hsiao and T. Luo, Nonlinear diffusive phenomena of solutions for the system of compressible adiabatic flow through porous media, J. Differential Equations, 125 (1996), 329-365. doi: 10.1006/jdeq.1996.0034.

[4]

L. Hsiao and D. Serre, Large-time behavior of solutions for the system of compressible adiabatic flow through porous media, Chinese Ann. Math. Ser. B, 16 (1995), 431-444.

[5]

L. Hsiao and D. Serre, Global existence of solutions for the system of compressible adiabatic flow through porous media, SIAM J. Math. Anal., 27 (1996), 70-77. doi: 10.1137/S0036141094267078.

[6]

H. Ma and M. Mei, Best asymptotic profile for linear damped $p$-system with boundary effect, J. Differential Equations, 249 (2010), 446-484. doi: 10.1016/j.jde.2010.04.008.

[7]

P. Marcati, M. Mei and B. Rubino, Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping, J. Math. Fluid Mech., 7 (2005), S224-S240. doi: 10.1007/s00021-005-0155-9.

[8]

P. Marcati and K. Nishihara, The $L^p$-$L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differential Equations, 191 (2003), 445-469. doi: 10.1016/S0022-0396(03)00026-3.

[9]

P. Marcati and R. Pan, On the diffusive profiles for the system of compressible adiabatic flow through porous media, SIAM J. Math. Anal., 33 (2001), 790-826. doi: 10.1137/S0036141099364401.

[10]

A. Matsumura, Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equations with the first-order dissipation,, Publ. Res. Inst. Math. Sci., 13 (): 349.  doi: 10.2977/prims/1195189813.

[11]

M. Mei, Best asymptotic profile for hyperbolic $p$-system with damping, SIAM J. Math. Anal., 42 (2010), 1-23. doi: 10.1137/090756594.

[12]

K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping, J. Differential Equations, 131 (1996), 171-188. doi: 10.1006/jdeq.1996.0159.

[13]

K. Nishihara, Asymptotics toward the diffusion wave for a one-dimensional compressible flow through porous media, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 177-196. doi: 10.1017/S0308210500002341.

[14]

K. Nishihara and M. Nishikawa, Asymptotic behavior of solutions to the system of compressible adiabatic flow through porous media, SIAM J. Math. Anal., 33 (2001), 216-239. doi: 10.1137/S003614109936467X.

[15]

K. Nishihara, W. Wang and T. Yang, $L^p$-convergence rate to nonlinear diffusion waves for $p$-system with damping, J. Differential Equations, 161 (2000), 191-218. doi: 10.1006/jdeq.1999.3703.

[16]

R. Pan, Boundary effects and large time behavior for the system of compressible adiabatic flow through porous media, Michigan Math. J., 49 (2001), 519-540. doi: 10.1307/mmj/1012409969.

[17]

R. Pan, Darcy's law as long-time limit of adiabatic porous media flow, J. Differential Equations, 220 (2006), 121-146. doi: 10.1016/j.jde.2004.10.013.

[18]

B. Said-Houari, Convergence to strong nonlinear diffusion waves for solutions to $p$-system with damping, J. Differential Equations, 247 (2009), 917-930. doi: 10.1016/j.jde.2009.04.011.

[19]

H. Zhao, Convergence to strong nonlinear diffusion waves for solutions of $p$-system with damping, J. Differential Equations, 174 (2001), 200-236. doi: 10.1006/jdeq.2000.3936.

[20]

C. Zhu, Convergence rates to nonlinear diffusion waves for weak entropy solutions to $p$-system with damping, Sci. China Ser. A, 46 (2003), 562-575. doi: 10.1007/BF02884028.

[1]

Shifeng Geng, Lina Zhang. Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2211-2228. doi: 10.3934/cpaa.2014.13.2211

[2]

Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure and Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689

[3]

Zhong Tan, Leilei Tong. Asymptotic behavior of the compressible non-isentropic Navier-Stokes-Maxwell system in $\mathbb{R}^3$. Kinetic and Related Models, 2018, 11 (1) : 191-213. doi: 10.3934/krm.2018010

[4]

Zhong Tan, Qiuju Xu, Huaqiao Wang. Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5083-5105. doi: 10.3934/dcds.2015.35.5083

[5]

Ruiying Wei, Yin Li, Zheng-an Yao. Global existence and convergence rates of solutions for the compressible Euler equations with damping. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2949-2967. doi: 10.3934/dcdsb.2020047

[6]

Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355

[7]

Yinnian He, Yi Li. Asymptotic behavior of linearized viscoelastic flow problem. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 843-856. doi: 10.3934/dcdsb.2008.10.843

[8]

L. Olsen. Rates of convergence towards the boundary of a self-similar set. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 799-811. doi: 10.3934/dcds.2007.19.799

[9]

Monica Conti, Stefania Gatti, Alain Miranville. Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 485-505. doi: 10.3934/dcdss.2012.5.485

[10]

Tetsuya Ishiwata. On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 865-873. doi: 10.3934/dcdss.2011.4.865

[11]

Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041

[12]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[13]

Mina Jiang, Changjiang Zhu. Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 887-918. doi: 10.3934/dcds.2009.23.887

[14]

Masashi Ohnawa. Convergence rates towards the traveling waves for a model system of radiating gas with discontinuities. Kinetic and Related Models, 2012, 5 (4) : 857-872. doi: 10.3934/krm.2012.5.857

[15]

Haibo Cui, Junpei Gao, Lei Yao. Asymptotic behavior of the one-dimensional compressible micropolar fluid model. Electronic Research Archive, 2021, 29 (2) : 2063-2075. doi: 10.3934/era.2020105

[16]

Chiu-Ya Lan, Chi-Kun Lin. Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 161-188. doi: 10.3934/dcds.2004.11.161

[17]

Jian Yang. Asymptotic behavior of solutions for competitive models with a free boundary. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3253-3276. doi: 10.3934/dcds.2015.35.3253

[18]

Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779

[19]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure and Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[20]

Sergio Frigeri. Asymptotic behavior of a hyperbolic system arising in ferroelectricity. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1393-1414. doi: 10.3934/cpaa.2008.7.1393

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]