-
Previous Article
Global solutions to quasilinear wave equations in homogeneous waveguides with Neumann boundary conditions
- CPAA Home
- This Issue
-
Next Article
The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$
Nonradial positive solutions for a biharmonic critical growth problem
1. | Department of Mathematics, East China Normal University, Shanghai, 200241, China |
References:
[1] |
C. O. Alves, J. M. do Ó and O. H. Miyagaki, Nontrivial solutions for a class of semilinear biharmonic problems involving critical exponents, Nonlinear Anal., 46 (2001), 121-133.
doi: 10.1016/S0362-546X(99)00449-6. |
[2] |
C. O. Alves and J. M. do Ó, Positive solutions of a fourth-order semilinear problem involving critical growth, Adv. Nonlinear Stud., 2 (2002), 437-458. |
[3] |
M. Badiale and E. Serra, Multiplicity results for the supercritical Hénon equation, Adv. Nonlinear Stud., 4 (2004), 453-467. |
[4] |
A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.
doi: 10.1002/cpa.3160410302. |
[5] |
T. Bartsch T. Weth and M. Willem, A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator, Calc. Var. Partial Differential Equations, 18 (2003), 253-268.
doi: 10.1007/s00526-003-0198-9. |
[6] |
V. Barutello, S. Secchi and E. Serra, A note on the radial solutions for the supercritical Hénon equation, J. Math. Anal. Appl., 341 (2008), 720-728. arXiv:0707.1790.
doi: 10.1016/j.jmaa.2007.10.052. |
[7] |
E. Berchio, F. Gazzola and T. Weth, Critical growth biharmonic elliptic problems under Steklov-type boundary conditions, Adv. Differential Equations, 12 (2007), 381-406. |
[8] |
E. Berchio, F. Gazzola and T. Weth, Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems, J. Reine Angew. Math., 620 (2008), 165-183.
doi: 10.1515/CRELLE.2008.052. |
[9] |
F. Bernis and H.-Ch. Grunau, Critical exponents and multiple critical dimensions for polyharmonic operators, J. Differential Equations, 117 (1995), 469-486.
doi: 10.1006/jdeq.1995.1062. |
[10] |
F. Bernis, J. García Azorero and I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order, Adv. Differential Equations, 1 (1996), 219-240. |
[11] |
H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. |
[12] |
J. Byeon and Z.-Q. Wang, On the Hénon equation: asymptotic profile of ground states. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 803-828.
doi: 10.1016/j.anihpc.2006.04.001. |
[13] |
J. Byeon and Z.-Q. Wang, On the Hénon equation: asymptotic profile of ground states. II, J. Differential Equations, 216 (2005), 78-108.
doi: 10.1016/j.jde.2005.02.018. |
[14] |
M. Calanchi, S. Secchi and E. Terraneo, Multiple solutions for a Hénon-like equation on the annulus, J. Differential Equations, 245 (2008), 1507-1525. arXiv:0705.1492.
doi: 10.1016/j.jde.2008.06.018. |
[15] |
D. Cao and S. Peng, The asymptotic behaviour of the ground state solutions for Hénon equation, J. Math. Anal. Appl., 278 (2003), 1-17.
doi: 10.1016/S0022-247X(02)00292-5. |
[16] |
D. Cao, S. Peng and S. Yan, Asymptotic behaviour of ground state solutions for the Hénon equation, IMA J. Appl. Math., 74 (2009), 468-480.
doi: 10.1093/imamat/hxn035. |
[17] |
G. Chen, W.-M. Ni and J. Zhou, Algorithms and visualization for solutions of nonlinear elliptic equations, Int. J. Bifurcat. Chaos, 10 (2000), 1565-1612.
doi: 10.1142/S0218127400001006. |
[18] |
F. Ebobisse and M. O. Ahmedou, On a nonlinear fourth order elliptic equation involving the critical Sobolev exponent, Nonlinear Anal., 52 (2003), 1535-1552. arXiv:math/0112240.
doi: 10.1016/S0362-546X(02)00273-0. |
[19] |
D. E. Edmunds, D. Fortunato and E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal., 112 (1990), 269-289.
doi: 10.1007/BF00381236. |
[20] |
P. Esposito, A. Pistoia and J. Wei, Concentrating solutions for the Hénon equation in $R^2$, J. Anal. Math., 100 (2006), 249-280.
doi: 10.1007/BF02916763. |
[21] |
J. García Azorero and I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc., 323 (1991), 877-895.
doi: 10.2307/2001562. |
[22] |
M. Gazzini and E. Serra, The Neumann problem for the Hénon equation, trace inequalities and Steklov eigenvalues, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 281-302. |
[23] |
F. Gazzola, Critical growth problems for polyharmonic operators, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 251-263. |
[24] |
F. Gazzola, H.-Ch. Grunau and M. Squassina, Existence and nonexistence results for critical growth biharmonic elliptic equations, Calc. Var. Partial Differential Equations, 18 (2003), 117-143.
doi: 10.1007/s00526-002-0182-9. |
[25] |
F. Gazzola and D. Pierotti, Positive solutions to critical growth biharmonic elliptic problems under Steklov boundary conditions, Nonlinear Anal., 71 (2009), 232-238.
doi: 10.1016/j.na.2008.10.052. |
[26] |
Y. Ge, Positive solutions in semilinear critical problems for polyharmonic operators, J. Math. Pures Appl., 84 (2005), 199-245.
doi: 10.1016/j.matpur.2004.10.002. |
[27] |
Y. Ge, J. Wei and F. Zhou, A critical elliptic problem for polyharmonic operators, J. Funct. Anal., 260 (2011), 2247-2282.
doi: 10.1016/j.jfa.2011.01.005. |
[28] |
B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[29] |
H.-Ch. Grunau, Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponents, Calc. Var. Partial Differential Equations, 3 (1995), 243-252.
doi: 10.1007/BF01205006. |
[30] |
Y. Guo and J. Wei, Supercritical biharmonic elliptic problems in domains with small holes, Math. Nachr., 282 (2009), 1724-1739.
doi: 10.1002/mana.200610814. |
[31] |
M. Hénon, Numerical experiments on the stability of spherical stellar systems, Astronom. Astrophys., 24 (1973), 229-238. |
[32] |
C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $R^n$, Comment. Math. Helv., 73 (1998), 206-231.
doi: 10.1007/s000140050052. |
[33] |
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1 (1985), 145-201. |
[34] |
E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equation, 18 (1993), 125-151.
doi: 10.1080/03605309308820923. |
[35] |
W.-M. Ni, A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J., 31 (1982), 801-807.
doi: 10.1512/iumj.1982.31.31056. |
[36] |
E. S. Noussair, C. A. Swanson and J. Yang, Critical semilinear biharmonic equations in $R^N$, Proc. Roy. Soc. Edinburgh Sect. A, 121 (1992), 139-148. |
[37] |
S. Peng, Multiple boundary concentrating solutions to Dirichlet problem of Hénon equation, Acta Math. Appl. Sin. Engl. Ser., 22 (2006), 137-162.
doi: 10.1007/s10255-005-0293-0. |
[38] |
A. Pistoia and E. Serra, Multi-peak solutions for the Hénon equation with slightly subcritical growth, Math. Z., 256 (2007), 75-97.
doi: 10.1007/s00209-006-0060-9. |
[39] |
S. I. Pohožaev, On the eigenfunctions of quasilinear elliptic problems, (Russian), Mat. Sb. (N.S.), 82 (1970), 192-212. |
[40] |
O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., 89 (1990), 1-52.
doi: 10.1016/0022-1236(90)90002-3. |
[41] |
E. Serra, Non radial positive solutions for the Hénon equation with critical growth, Calc. Var. Partial Differential Equations, 23 (2005), 301-326.
doi: 10.1007/s00526-004-0302-9. |
[42] |
D. Smets, J. Su and M. Willem, Non-radial ground states for the Hénon equation, Commun. Contemp. Math., 4 (2002), 467-480.
doi: 10.1142/S0219199702000725. |
[43] |
D. Smets and M. Willem, Partial symmetry and asymptotic behavior for some elliptic variational problems, Calc. Var. Partial Differential Equations, 18 (2003), 57-75.
doi: 10.1007/s00526-002-0180-y. |
[44] |
M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984), 511-517.
doi: 10.1007/BF01174186. |
[45] |
S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 1 (1996), 241-264. |
[46] |
W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations, 42 (1981), 400-413.
doi: 10.1016/0022-0396(81)90113-3. |
[47] |
R. C. A. M. Van der Vorst, Variational identities and applications to differential systems, Arch. Rational Mech. Anal., 116 (1992), 375-398.
doi: 10.1007/BF00375674. |
[48] |
R. C. A. M. Van der Vorst, Best constant for the embedding of the space $H^2\cap H^1_0(\Omega)$ into $L^{(2N)/(N-4)(\Omega)$, Differential Integral Equations, 6 (1993), 259-276. |
show all references
References:
[1] |
C. O. Alves, J. M. do Ó and O. H. Miyagaki, Nontrivial solutions for a class of semilinear biharmonic problems involving critical exponents, Nonlinear Anal., 46 (2001), 121-133.
doi: 10.1016/S0362-546X(99)00449-6. |
[2] |
C. O. Alves and J. M. do Ó, Positive solutions of a fourth-order semilinear problem involving critical growth, Adv. Nonlinear Stud., 2 (2002), 437-458. |
[3] |
M. Badiale and E. Serra, Multiplicity results for the supercritical Hénon equation, Adv. Nonlinear Stud., 4 (2004), 453-467. |
[4] |
A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.
doi: 10.1002/cpa.3160410302. |
[5] |
T. Bartsch T. Weth and M. Willem, A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator, Calc. Var. Partial Differential Equations, 18 (2003), 253-268.
doi: 10.1007/s00526-003-0198-9. |
[6] |
V. Barutello, S. Secchi and E. Serra, A note on the radial solutions for the supercritical Hénon equation, J. Math. Anal. Appl., 341 (2008), 720-728. arXiv:0707.1790.
doi: 10.1016/j.jmaa.2007.10.052. |
[7] |
E. Berchio, F. Gazzola and T. Weth, Critical growth biharmonic elliptic problems under Steklov-type boundary conditions, Adv. Differential Equations, 12 (2007), 381-406. |
[8] |
E. Berchio, F. Gazzola and T. Weth, Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems, J. Reine Angew. Math., 620 (2008), 165-183.
doi: 10.1515/CRELLE.2008.052. |
[9] |
F. Bernis and H.-Ch. Grunau, Critical exponents and multiple critical dimensions for polyharmonic operators, J. Differential Equations, 117 (1995), 469-486.
doi: 10.1006/jdeq.1995.1062. |
[10] |
F. Bernis, J. García Azorero and I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order, Adv. Differential Equations, 1 (1996), 219-240. |
[11] |
H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. |
[12] |
J. Byeon and Z.-Q. Wang, On the Hénon equation: asymptotic profile of ground states. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 803-828.
doi: 10.1016/j.anihpc.2006.04.001. |
[13] |
J. Byeon and Z.-Q. Wang, On the Hénon equation: asymptotic profile of ground states. II, J. Differential Equations, 216 (2005), 78-108.
doi: 10.1016/j.jde.2005.02.018. |
[14] |
M. Calanchi, S. Secchi and E. Terraneo, Multiple solutions for a Hénon-like equation on the annulus, J. Differential Equations, 245 (2008), 1507-1525. arXiv:0705.1492.
doi: 10.1016/j.jde.2008.06.018. |
[15] |
D. Cao and S. Peng, The asymptotic behaviour of the ground state solutions for Hénon equation, J. Math. Anal. Appl., 278 (2003), 1-17.
doi: 10.1016/S0022-247X(02)00292-5. |
[16] |
D. Cao, S. Peng and S. Yan, Asymptotic behaviour of ground state solutions for the Hénon equation, IMA J. Appl. Math., 74 (2009), 468-480.
doi: 10.1093/imamat/hxn035. |
[17] |
G. Chen, W.-M. Ni and J. Zhou, Algorithms and visualization for solutions of nonlinear elliptic equations, Int. J. Bifurcat. Chaos, 10 (2000), 1565-1612.
doi: 10.1142/S0218127400001006. |
[18] |
F. Ebobisse and M. O. Ahmedou, On a nonlinear fourth order elliptic equation involving the critical Sobolev exponent, Nonlinear Anal., 52 (2003), 1535-1552. arXiv:math/0112240.
doi: 10.1016/S0362-546X(02)00273-0. |
[19] |
D. E. Edmunds, D. Fortunato and E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal., 112 (1990), 269-289.
doi: 10.1007/BF00381236. |
[20] |
P. Esposito, A. Pistoia and J. Wei, Concentrating solutions for the Hénon equation in $R^2$, J. Anal. Math., 100 (2006), 249-280.
doi: 10.1007/BF02916763. |
[21] |
J. García Azorero and I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc., 323 (1991), 877-895.
doi: 10.2307/2001562. |
[22] |
M. Gazzini and E. Serra, The Neumann problem for the Hénon equation, trace inequalities and Steklov eigenvalues, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 281-302. |
[23] |
F. Gazzola, Critical growth problems for polyharmonic operators, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 251-263. |
[24] |
F. Gazzola, H.-Ch. Grunau and M. Squassina, Existence and nonexistence results for critical growth biharmonic elliptic equations, Calc. Var. Partial Differential Equations, 18 (2003), 117-143.
doi: 10.1007/s00526-002-0182-9. |
[25] |
F. Gazzola and D. Pierotti, Positive solutions to critical growth biharmonic elliptic problems under Steklov boundary conditions, Nonlinear Anal., 71 (2009), 232-238.
doi: 10.1016/j.na.2008.10.052. |
[26] |
Y. Ge, Positive solutions in semilinear critical problems for polyharmonic operators, J. Math. Pures Appl., 84 (2005), 199-245.
doi: 10.1016/j.matpur.2004.10.002. |
[27] |
Y. Ge, J. Wei and F. Zhou, A critical elliptic problem for polyharmonic operators, J. Funct. Anal., 260 (2011), 2247-2282.
doi: 10.1016/j.jfa.2011.01.005. |
[28] |
B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[29] |
H.-Ch. Grunau, Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponents, Calc. Var. Partial Differential Equations, 3 (1995), 243-252.
doi: 10.1007/BF01205006. |
[30] |
Y. Guo and J. Wei, Supercritical biharmonic elliptic problems in domains with small holes, Math. Nachr., 282 (2009), 1724-1739.
doi: 10.1002/mana.200610814. |
[31] |
M. Hénon, Numerical experiments on the stability of spherical stellar systems, Astronom. Astrophys., 24 (1973), 229-238. |
[32] |
C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $R^n$, Comment. Math. Helv., 73 (1998), 206-231.
doi: 10.1007/s000140050052. |
[33] |
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1 (1985), 145-201. |
[34] |
E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equation, 18 (1993), 125-151.
doi: 10.1080/03605309308820923. |
[35] |
W.-M. Ni, A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J., 31 (1982), 801-807.
doi: 10.1512/iumj.1982.31.31056. |
[36] |
E. S. Noussair, C. A. Swanson and J. Yang, Critical semilinear biharmonic equations in $R^N$, Proc. Roy. Soc. Edinburgh Sect. A, 121 (1992), 139-148. |
[37] |
S. Peng, Multiple boundary concentrating solutions to Dirichlet problem of Hénon equation, Acta Math. Appl. Sin. Engl. Ser., 22 (2006), 137-162.
doi: 10.1007/s10255-005-0293-0. |
[38] |
A. Pistoia and E. Serra, Multi-peak solutions for the Hénon equation with slightly subcritical growth, Math. Z., 256 (2007), 75-97.
doi: 10.1007/s00209-006-0060-9. |
[39] |
S. I. Pohožaev, On the eigenfunctions of quasilinear elliptic problems, (Russian), Mat. Sb. (N.S.), 82 (1970), 192-212. |
[40] |
O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., 89 (1990), 1-52.
doi: 10.1016/0022-1236(90)90002-3. |
[41] |
E. Serra, Non radial positive solutions for the Hénon equation with critical growth, Calc. Var. Partial Differential Equations, 23 (2005), 301-326.
doi: 10.1007/s00526-004-0302-9. |
[42] |
D. Smets, J. Su and M. Willem, Non-radial ground states for the Hénon equation, Commun. Contemp. Math., 4 (2002), 467-480.
doi: 10.1142/S0219199702000725. |
[43] |
D. Smets and M. Willem, Partial symmetry and asymptotic behavior for some elliptic variational problems, Calc. Var. Partial Differential Equations, 18 (2003), 57-75.
doi: 10.1007/s00526-002-0180-y. |
[44] |
M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984), 511-517.
doi: 10.1007/BF01174186. |
[45] |
S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 1 (1996), 241-264. |
[46] |
W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations, 42 (1981), 400-413.
doi: 10.1016/0022-0396(81)90113-3. |
[47] |
R. C. A. M. Van der Vorst, Variational identities and applications to differential systems, Arch. Rational Mech. Anal., 116 (1992), 375-398.
doi: 10.1007/BF00375674. |
[48] |
R. C. A. M. Van der Vorst, Best constant for the embedding of the space $H^2\cap H^1_0(\Omega)$ into $L^{(2N)/(N-4)(\Omega)$, Differential Integral Equations, 6 (1993), 259-276. |
[1] |
M. Ben Ayed, Abdelbaki Selmi. Asymptotic behavior and existence results for a biharmonic equation involving the critical Sobolev exponent in a five-dimensional domain. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1705-1722. doi: 10.3934/cpaa.2010.9.1705 |
[2] |
Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure and Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527 |
[3] |
Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007 |
[4] |
Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991 |
[5] |
Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357 |
[6] |
Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231 |
[7] |
Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033 |
[8] |
M. L. Miotto. Multiple solutions for elliptic problem in $\mathbb{R}^N$ with critical Sobolev exponent and weight function. Communications on Pure and Applied Analysis, 2010, 9 (1) : 233-248. doi: 10.3934/cpaa.2010.9.233 |
[9] |
Y. Kabeya. Behaviors of solutions to a scalar-field equation involving the critical Sobolev exponent with the Robin condition. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 117-134. doi: 10.3934/dcds.2006.14.117 |
[10] |
Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907 |
[11] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[12] |
Zongming Guo, Xiaohong Guan, Yonggang Zhao. Uniqueness and asymptotic behavior of solutions of a biharmonic equation with supercritical exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2613-2636. doi: 10.3934/dcds.2019109 |
[13] |
Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103 |
[14] |
T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875 |
[15] |
Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143 |
[16] |
Filippo Gazzola. On the moments of solutions to linear parabolic equations involving the biharmonic operator. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3583-3597. doi: 10.3934/dcds.2013.33.3583 |
[17] |
Pasquale Candito, Giovanni Molica Bisci. Multiple solutions for a Navier boundary value problem involving the $p$--biharmonic operator. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 741-751. doi: 10.3934/dcdss.2012.5.741 |
[18] |
Dongsheng Kang, Liangshun Xu. Biharmonic systems involving multiple Rellich-type potentials and critical Rellich-Sobolev nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (2) : 333-346. doi: 10.3934/cpaa.2018019 |
[19] |
Elvise Berchio, Filippo Gazzola. Positive solutions to a linearly perturbed critical growth biharmonic problem. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 809-823. doi: 10.3934/dcdss.2011.4.809 |
[20] |
Michinori Ishiwata. Existence of a stable set for some nonlinear parabolic equation involving critical Sobolev exponent. Conference Publications, 2005, 2005 (Special) : 443-452. doi: 10.3934/proc.2005.2005.443 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]