March  2012, 11(2): 547-556. doi: 10.3934/cpaa.2012.11.547

Global solutions to quasilinear wave equations in homogeneous waveguides with Neumann boundary conditions

1. 

Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, United States

Received  September 2010 Revised  February 2011 Published  October 2011

This article focuses on proving global existence for quasilinear wave equations with small initial data in homogeneous waveguides with infinite base of dimensions $n\geq 4$. The key estimate is a localized energy estimate for a perturbed wave equation.
Citation: Jason Metcalfe, Jacob Perry. Global solutions to quasilinear wave equations in homogeneous waveguides with Neumann boundary conditions. Communications on Pure & Applied Analysis, 2012, 11 (2) : 547-556. doi: 10.3934/cpaa.2012.11.547
References:
[1]

M. Keel, H. F. Smith and C. D. Sogge, Almost global existence for some semilinear wave equations,, J. Anal. Math., 87 (2002), 265.  doi: 10.1007/BF02868477.  Google Scholar

[2]

M. Keel, H. F. Smith and C. D. Sogge, Global existence for a quasilinear wave equation outside of star-shaped domains,, J. Funct. Anal., 189 (2002), 155.  doi: 10.1006/jfan.2001.3844.  Google Scholar

[3]

S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation,, Comm. Pure Appl. Math., 38 (1985), 321.  doi: 10.1002/cpa.3160380305.  Google Scholar

[4]

S. Klainerman, The null condition and global existence to nonlinear wave equations,, Lect. Appl. Math., 23 (1986), 293.   Google Scholar

[5]

H. Koch, Mixed problems for fully nonlinear hyperbolic equations,, Math. Z., 214 (1993), 9.  doi: 10.1007/BF02572388.  Google Scholar

[6]

P. H. Lesky and R. Racke, Nonlinear wave equations in infinite waveguides,, Comm. Partial Differential Equations, 28 (2003), 1265.  doi: 10.1081/PDE-120024363.  Google Scholar

[7]

J. Metcalfe and C. D. Sogge, Long time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods,, SIAM J. Math. Anal., 38 (2006), 188.  doi: 10.1137/050627149.  Google Scholar

[8]

J. Metcalfe, C. D. Sogge and A. Stewart, Nonlinear hyperbolic equations in infinite homogeneous waveguides,, Comm. Partial Differential Equations, 30 (2005), 643.  doi: 10.1081/PDE-200059267.  Google Scholar

[9]

J. Metcalfe and A. Stewart, Almost global existence for quasilinear wave equations in waveguides with Neumann boundary conditions,, Trans. Amer. Math. Soc., 360 (2008), 171.  doi: 10.1090/S0002-9947-07-04290-0.  Google Scholar

[10]

C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equations,, Proc. Roy. Soc. Ser. A., 306 (1968), 291.  doi: 10.1098/rspa.1968.0151.  Google Scholar

[11]

J. Sterbenz, Angular regularity and Strichartz estimates for the wave equation, with an appendix by I. Rodnianski,, Int. Math. Res. Not., 2005 (2005), 187.  doi: 10.1155/IMRN.2005.187.  Google Scholar

[12]

A. Stewart, "Existence Theorems for Some Nonlinear Hyperbolic Equations on a Waveguide,", Ph. D. thesis, (2006).   Google Scholar

show all references

References:
[1]

M. Keel, H. F. Smith and C. D. Sogge, Almost global existence for some semilinear wave equations,, J. Anal. Math., 87 (2002), 265.  doi: 10.1007/BF02868477.  Google Scholar

[2]

M. Keel, H. F. Smith and C. D. Sogge, Global existence for a quasilinear wave equation outside of star-shaped domains,, J. Funct. Anal., 189 (2002), 155.  doi: 10.1006/jfan.2001.3844.  Google Scholar

[3]

S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation,, Comm. Pure Appl. Math., 38 (1985), 321.  doi: 10.1002/cpa.3160380305.  Google Scholar

[4]

S. Klainerman, The null condition and global existence to nonlinear wave equations,, Lect. Appl. Math., 23 (1986), 293.   Google Scholar

[5]

H. Koch, Mixed problems for fully nonlinear hyperbolic equations,, Math. Z., 214 (1993), 9.  doi: 10.1007/BF02572388.  Google Scholar

[6]

P. H. Lesky and R. Racke, Nonlinear wave equations in infinite waveguides,, Comm. Partial Differential Equations, 28 (2003), 1265.  doi: 10.1081/PDE-120024363.  Google Scholar

[7]

J. Metcalfe and C. D. Sogge, Long time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods,, SIAM J. Math. Anal., 38 (2006), 188.  doi: 10.1137/050627149.  Google Scholar

[8]

J. Metcalfe, C. D. Sogge and A. Stewart, Nonlinear hyperbolic equations in infinite homogeneous waveguides,, Comm. Partial Differential Equations, 30 (2005), 643.  doi: 10.1081/PDE-200059267.  Google Scholar

[9]

J. Metcalfe and A. Stewart, Almost global existence for quasilinear wave equations in waveguides with Neumann boundary conditions,, Trans. Amer. Math. Soc., 360 (2008), 171.  doi: 10.1090/S0002-9947-07-04290-0.  Google Scholar

[10]

C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equations,, Proc. Roy. Soc. Ser. A., 306 (1968), 291.  doi: 10.1098/rspa.1968.0151.  Google Scholar

[11]

J. Sterbenz, Angular regularity and Strichartz estimates for the wave equation, with an appendix by I. Rodnianski,, Int. Math. Res. Not., 2005 (2005), 187.  doi: 10.1155/IMRN.2005.187.  Google Scholar

[12]

A. Stewart, "Existence Theorems for Some Nonlinear Hyperbolic Equations on a Waveguide,", Ph. D. thesis, (2006).   Google Scholar

[1]

Boris P. Belinskiy, Peter Caithamer. Energy estimate for the wave equation driven by a fractional Gaussian noise. Conference Publications, 2007, 2007 (Special) : 92-101. doi: 10.3934/proc.2007.2007.92

[2]

Chang-Yeol Jung, Alex Mahalov. Wave propagation in random waveguides. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 147-159. doi: 10.3934/dcds.2010.28.147

[3]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[4]

Neal Bez, Chris Jeavons. A sharp Sobolev-Strichartz estimate for the wave equation. Electronic Research Announcements, 2015, 22: 46-54. doi: 10.3934/era.2015.22.46

[5]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control & Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[6]

Aníbal Rodríguez-Bernal, Enrique Zuazua. Parabolic singular limit of a wave equation with localized boundary damping. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 303-346. doi: 10.3934/dcds.1995.1.303

[7]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387

[8]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[9]

Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469

[10]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[11]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[12]

Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021

[13]

Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029

[14]

Jeong Ja Bae, Mitsuhiro Nakao. Existence problem for the Kirchhoff type wave equation with a localized weakly nonlinear dissipation in exterior domains. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 731-743. doi: 10.3934/dcds.2004.11.731

[15]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[16]

Yannick Privat, Emmanuel Trélat, Enrique Zuazua. Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6133-6153. doi: 10.3934/dcds.2015.35.6133

[17]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[18]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[19]

Joachim Krieger, Kenji Nakanishi, Wilhelm Schlag. Global dynamics of the nonradial energy-critical wave equation above the ground state energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2423-2450. doi: 10.3934/dcds.2013.33.2423

[20]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]