March  2012, 11(2): 547-556. doi: 10.3934/cpaa.2012.11.547

Global solutions to quasilinear wave equations in homogeneous waveguides with Neumann boundary conditions

1. 

Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, United States

Received  September 2010 Revised  February 2011 Published  October 2011

This article focuses on proving global existence for quasilinear wave equations with small initial data in homogeneous waveguides with infinite base of dimensions $n\geq 4$. The key estimate is a localized energy estimate for a perturbed wave equation.
Citation: Jason Metcalfe, Jacob Perry. Global solutions to quasilinear wave equations in homogeneous waveguides with Neumann boundary conditions. Communications on Pure & Applied Analysis, 2012, 11 (2) : 547-556. doi: 10.3934/cpaa.2012.11.547
References:
[1]

M. Keel, H. F. Smith and C. D. Sogge, Almost global existence for some semilinear wave equations,, J. Anal. Math., 87 (2002), 265.  doi: 10.1007/BF02868477.  Google Scholar

[2]

M. Keel, H. F. Smith and C. D. Sogge, Global existence for a quasilinear wave equation outside of star-shaped domains,, J. Funct. Anal., 189 (2002), 155.  doi: 10.1006/jfan.2001.3844.  Google Scholar

[3]

S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation,, Comm. Pure Appl. Math., 38 (1985), 321.  doi: 10.1002/cpa.3160380305.  Google Scholar

[4]

S. Klainerman, The null condition and global existence to nonlinear wave equations,, Lect. Appl. Math., 23 (1986), 293.   Google Scholar

[5]

H. Koch, Mixed problems for fully nonlinear hyperbolic equations,, Math. Z., 214 (1993), 9.  doi: 10.1007/BF02572388.  Google Scholar

[6]

P. H. Lesky and R. Racke, Nonlinear wave equations in infinite waveguides,, Comm. Partial Differential Equations, 28 (2003), 1265.  doi: 10.1081/PDE-120024363.  Google Scholar

[7]

J. Metcalfe and C. D. Sogge, Long time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods,, SIAM J. Math. Anal., 38 (2006), 188.  doi: 10.1137/050627149.  Google Scholar

[8]

J. Metcalfe, C. D. Sogge and A. Stewart, Nonlinear hyperbolic equations in infinite homogeneous waveguides,, Comm. Partial Differential Equations, 30 (2005), 643.  doi: 10.1081/PDE-200059267.  Google Scholar

[9]

J. Metcalfe and A. Stewart, Almost global existence for quasilinear wave equations in waveguides with Neumann boundary conditions,, Trans. Amer. Math. Soc., 360 (2008), 171.  doi: 10.1090/S0002-9947-07-04290-0.  Google Scholar

[10]

C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equations,, Proc. Roy. Soc. Ser. A., 306 (1968), 291.  doi: 10.1098/rspa.1968.0151.  Google Scholar

[11]

J. Sterbenz, Angular regularity and Strichartz estimates for the wave equation, with an appendix by I. Rodnianski,, Int. Math. Res. Not., 2005 (2005), 187.  doi: 10.1155/IMRN.2005.187.  Google Scholar

[12]

A. Stewart, "Existence Theorems for Some Nonlinear Hyperbolic Equations on a Waveguide,", Ph. D. thesis, (2006).   Google Scholar

show all references

References:
[1]

M. Keel, H. F. Smith and C. D. Sogge, Almost global existence for some semilinear wave equations,, J. Anal. Math., 87 (2002), 265.  doi: 10.1007/BF02868477.  Google Scholar

[2]

M. Keel, H. F. Smith and C. D. Sogge, Global existence for a quasilinear wave equation outside of star-shaped domains,, J. Funct. Anal., 189 (2002), 155.  doi: 10.1006/jfan.2001.3844.  Google Scholar

[3]

S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation,, Comm. Pure Appl. Math., 38 (1985), 321.  doi: 10.1002/cpa.3160380305.  Google Scholar

[4]

S. Klainerman, The null condition and global existence to nonlinear wave equations,, Lect. Appl. Math., 23 (1986), 293.   Google Scholar

[5]

H. Koch, Mixed problems for fully nonlinear hyperbolic equations,, Math. Z., 214 (1993), 9.  doi: 10.1007/BF02572388.  Google Scholar

[6]

P. H. Lesky and R. Racke, Nonlinear wave equations in infinite waveguides,, Comm. Partial Differential Equations, 28 (2003), 1265.  doi: 10.1081/PDE-120024363.  Google Scholar

[7]

J. Metcalfe and C. D. Sogge, Long time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods,, SIAM J. Math. Anal., 38 (2006), 188.  doi: 10.1137/050627149.  Google Scholar

[8]

J. Metcalfe, C. D. Sogge and A. Stewart, Nonlinear hyperbolic equations in infinite homogeneous waveguides,, Comm. Partial Differential Equations, 30 (2005), 643.  doi: 10.1081/PDE-200059267.  Google Scholar

[9]

J. Metcalfe and A. Stewart, Almost global existence for quasilinear wave equations in waveguides with Neumann boundary conditions,, Trans. Amer. Math. Soc., 360 (2008), 171.  doi: 10.1090/S0002-9947-07-04290-0.  Google Scholar

[10]

C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equations,, Proc. Roy. Soc. Ser. A., 306 (1968), 291.  doi: 10.1098/rspa.1968.0151.  Google Scholar

[11]

J. Sterbenz, Angular regularity and Strichartz estimates for the wave equation, with an appendix by I. Rodnianski,, Int. Math. Res. Not., 2005 (2005), 187.  doi: 10.1155/IMRN.2005.187.  Google Scholar

[12]

A. Stewart, "Existence Theorems for Some Nonlinear Hyperbolic Equations on a Waveguide,", Ph. D. thesis, (2006).   Google Scholar

[1]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[2]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[3]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[4]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[5]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[7]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[8]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[9]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[10]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[11]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[12]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[13]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[14]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[15]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[16]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[17]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[18]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[19]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[20]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]