• Previous Article
    The non-linear Schrödinger equation with non-periodic potential: infinite-bump solutions and non-degeneracy
  • CPAA Home
  • This Issue
  • Next Article
    Global solutions to quasilinear wave equations in homogeneous waveguides with Neumann boundary conditions
March  2012, 11(2): 557-586. doi: 10.3934/cpaa.2012.11.557

On the constants in a Kato inequality for the Euler and Navier-Stokes equations

1. 

Dipartimento di Matematica, Politecnico di Milano, P.za L. da Vinci 32, I-20133 Milano, Italy

2. 

Dipartimento di Matematica, Università di Milano, Via C. Saldini 50, I-20133 Milano, Italy

Received  September 2010 Revised  March 2011 Published  October 2011

We continue an analysis, started in [10], of some issues related to the incompressible Euler or Navier-Stokes (NS) equations on a $d$-dimensional torus $T^d$. More specifically, we consider the quadratic term in these equations; this arises from the bilinear map $(v, w) \mapsto v \cdot \partial w$, where $v, w : T^d \to R^d$ are two velocity fields. We derive upper and lower bounds for the constants in some inequalities related to the above bilinear map; these bounds hold, in particular, for the sharp constants $G_{n d} \equiv G_n$ in the Kato inequality $| < v \cdot \partial w | w >_n | \leq G_n || v ||_n || w ||^2_n$, where $n \in (d/2 + 1, + \infty)$ and $v, w$ are in the Sobolev spaces $H^n_{\Sigma_0}, H^{n+1}_{\Sigma_0}$ of zero mean, divergence free vector fields of orders $n$ and $n+1$, respectively. As examples, the numerical values of our upper and lower bounds are reported for $d=3$ and some values of $n$. When combined with the results of [10] on another inequality, the results of the present paper can be employed to set up fully quantitative error estimates for the approximate solutions of the Euler/NS equations, or to derive quantitative bounds on the time of existence of the exact solutions with specified initial data; a sketch of this program is given.
Citation: Carlo Morosi, Livio Pizzocchero. On the constants in a Kato inequality for the Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 557-586. doi: 10.3934/cpaa.2012.11.557
References:
[1]

A. Abdelrazec and D. Pelinovsky, Convergence of the Adomian decomposition method for initial-value problems,, Numer. Methods Partial Differential Equations \textbf{27} (2011), 27 (2011), 749.  doi: 10.1002/num.20549.  Google Scholar

[2]

R. A. Adams, "Sobolev Spaces,'', Academic Press, (1978).   Google Scholar

[3]

M. V. Bartuccelli, K. B. Blyuss and Y. N. Kyrychko, Length scales and positivity of solutions of a class of reaction-diffusion equations,, Comm. Pure Appl. Anal., 3 (2004), 25.  doi: 10.3934/cpaa.2004.3.25.  Google Scholar

[4]

S. I. Chernyshenko, P. Constantin, J. C. Robinson and E. S. Titi, A posteriori regularity of the three-dimensional Navier-Stokes equations from numerical computations,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2372512.  Google Scholar

[5]

P. Constantin and C. Foias, "Navier Stokes Equations,'', Chicago University Press, (1988).   Google Scholar

[6]

T. Kato, Nonstationary flows of viscous and ideal fluids in $R^3$,, J. Funct. Anal., 9 (1972), 296.   Google Scholar

[7]

Y. N. Kyrychko and M. V. Bartuccelli, Length scales for the Navier-Stokes equations on a rotating sphere,, Phys. Lett. A, 324 (2004), 179.  doi: 10.1016/j.physleta.2004.03.008.  Google Scholar

[8]

C. Morosi and L. Pizzocchero, On approximate solutions of semilinear evolution equations II. Generalizations, and applications to Navier-Stokes equations,, Rev. Math. Phys., 20 (2008), 625.  doi: 10.1142/S0129055X08003407.  Google Scholar

[9]

C. Morosi and L. Pizzocchero, An $H^1$ setting for the Navier-Stokes equations: quantitative estimates,, Nonlinear Analysis, 74 (2011), 2398.  doi: 10.1016/j.na.2010.11.043.  Google Scholar

[10]

C. Morosi and L. Pizzocchero, On the constants in a basic inequality for the Euler and Navier-Stokes equations,, preprint, ().   Google Scholar

[11]

C. Morosi and L. Pizzocchero, On approximate solutions of the incompressible Euler and Navier-Stokes equations,, preprint, ().   Google Scholar

[12]

D. Pelinovsky and A. Sakovich, Global well-posedness of the short-pulse and sine-Gordon equations in energy space,, Comm. Partial Differential Equations, 35 (2010), 613.  doi: 10.1080/03605300903509104.  Google Scholar

[13]

P. Zgliczyński and K. Mischaikow, Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation,, Found. Comput. Math., 1 (2001), 255.  doi: 10.1007/s102080010010.  Google Scholar

[14]

P. Zgliczyński, Rigorous numerics for dissipative partial differential equations II. Periodic orbit for the Kuramoto-Sivashinsky PDE - A computer-assisted proof,, Found. Comput. Math., 4 (2004), 157.  doi: 10.1007/s10208-002-0080-8.  Google Scholar

show all references

References:
[1]

A. Abdelrazec and D. Pelinovsky, Convergence of the Adomian decomposition method for initial-value problems,, Numer. Methods Partial Differential Equations \textbf{27} (2011), 27 (2011), 749.  doi: 10.1002/num.20549.  Google Scholar

[2]

R. A. Adams, "Sobolev Spaces,'', Academic Press, (1978).   Google Scholar

[3]

M. V. Bartuccelli, K. B. Blyuss and Y. N. Kyrychko, Length scales and positivity of solutions of a class of reaction-diffusion equations,, Comm. Pure Appl. Anal., 3 (2004), 25.  doi: 10.3934/cpaa.2004.3.25.  Google Scholar

[4]

S. I. Chernyshenko, P. Constantin, J. C. Robinson and E. S. Titi, A posteriori regularity of the three-dimensional Navier-Stokes equations from numerical computations,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2372512.  Google Scholar

[5]

P. Constantin and C. Foias, "Navier Stokes Equations,'', Chicago University Press, (1988).   Google Scholar

[6]

T. Kato, Nonstationary flows of viscous and ideal fluids in $R^3$,, J. Funct. Anal., 9 (1972), 296.   Google Scholar

[7]

Y. N. Kyrychko and M. V. Bartuccelli, Length scales for the Navier-Stokes equations on a rotating sphere,, Phys. Lett. A, 324 (2004), 179.  doi: 10.1016/j.physleta.2004.03.008.  Google Scholar

[8]

C. Morosi and L. Pizzocchero, On approximate solutions of semilinear evolution equations II. Generalizations, and applications to Navier-Stokes equations,, Rev. Math. Phys., 20 (2008), 625.  doi: 10.1142/S0129055X08003407.  Google Scholar

[9]

C. Morosi and L. Pizzocchero, An $H^1$ setting for the Navier-Stokes equations: quantitative estimates,, Nonlinear Analysis, 74 (2011), 2398.  doi: 10.1016/j.na.2010.11.043.  Google Scholar

[10]

C. Morosi and L. Pizzocchero, On the constants in a basic inequality for the Euler and Navier-Stokes equations,, preprint, ().   Google Scholar

[11]

C. Morosi and L. Pizzocchero, On approximate solutions of the incompressible Euler and Navier-Stokes equations,, preprint, ().   Google Scholar

[12]

D. Pelinovsky and A. Sakovich, Global well-posedness of the short-pulse and sine-Gordon equations in energy space,, Comm. Partial Differential Equations, 35 (2010), 613.  doi: 10.1080/03605300903509104.  Google Scholar

[13]

P. Zgliczyński and K. Mischaikow, Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation,, Found. Comput. Math., 1 (2001), 255.  doi: 10.1007/s102080010010.  Google Scholar

[14]

P. Zgliczyński, Rigorous numerics for dissipative partial differential equations II. Periodic orbit for the Kuramoto-Sivashinsky PDE - A computer-assisted proof,, Found. Comput. Math., 4 (2004), 157.  doi: 10.1007/s10208-002-0080-8.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[5]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[6]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[7]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[8]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[9]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[10]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[11]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[12]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[13]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[14]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[15]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[16]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[17]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[18]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[19]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[20]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]