• Previous Article
    The non-linear Schrödinger equation with non-periodic potential: infinite-bump solutions and non-degeneracy
  • CPAA Home
  • This Issue
  • Next Article
    Global solutions to quasilinear wave equations in homogeneous waveguides with Neumann boundary conditions
March  2012, 11(2): 557-586. doi: 10.3934/cpaa.2012.11.557

On the constants in a Kato inequality for the Euler and Navier-Stokes equations

1. 

Dipartimento di Matematica, Politecnico di Milano, P.za L. da Vinci 32, I-20133 Milano, Italy

2. 

Dipartimento di Matematica, Università di Milano, Via C. Saldini 50, I-20133 Milano, Italy

Received  September 2010 Revised  March 2011 Published  October 2011

We continue an analysis, started in [10], of some issues related to the incompressible Euler or Navier-Stokes (NS) equations on a $d$-dimensional torus $T^d$. More specifically, we consider the quadratic term in these equations; this arises from the bilinear map $(v, w) \mapsto v \cdot \partial w$, where $v, w : T^d \to R^d$ are two velocity fields. We derive upper and lower bounds for the constants in some inequalities related to the above bilinear map; these bounds hold, in particular, for the sharp constants $G_{n d} \equiv G_n$ in the Kato inequality $| < v \cdot \partial w | w >_n | \leq G_n || v ||_n || w ||^2_n$, where $n \in (d/2 + 1, + \infty)$ and $v, w$ are in the Sobolev spaces $H^n_{\Sigma_0}, H^{n+1}_{\Sigma_0}$ of zero mean, divergence free vector fields of orders $n$ and $n+1$, respectively. As examples, the numerical values of our upper and lower bounds are reported for $d=3$ and some values of $n$. When combined with the results of [10] on another inequality, the results of the present paper can be employed to set up fully quantitative error estimates for the approximate solutions of the Euler/NS equations, or to derive quantitative bounds on the time of existence of the exact solutions with specified initial data; a sketch of this program is given.
Citation: Carlo Morosi, Livio Pizzocchero. On the constants in a Kato inequality for the Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 557-586. doi: 10.3934/cpaa.2012.11.557
References:
[1]

A. Abdelrazec and D. Pelinovsky, Convergence of the Adomian decomposition method for initial-value problems,, Numer. Methods Partial Differential Equations \textbf{27} (2011), 27 (2011), 749. doi: 10.1002/num.20549. Google Scholar

[2]

R. A. Adams, "Sobolev Spaces,'', Academic Press, (1978). Google Scholar

[3]

M. V. Bartuccelli, K. B. Blyuss and Y. N. Kyrychko, Length scales and positivity of solutions of a class of reaction-diffusion equations,, Comm. Pure Appl. Anal., 3 (2004), 25. doi: 10.3934/cpaa.2004.3.25. Google Scholar

[4]

S. I. Chernyshenko, P. Constantin, J. C. Robinson and E. S. Titi, A posteriori regularity of the three-dimensional Navier-Stokes equations from numerical computations,, J. Math. Phys., 48 (2007). doi: 10.1063/1.2372512. Google Scholar

[5]

P. Constantin and C. Foias, "Navier Stokes Equations,'', Chicago University Press, (1988). Google Scholar

[6]

T. Kato, Nonstationary flows of viscous and ideal fluids in $R^3$,, J. Funct. Anal., 9 (1972), 296. Google Scholar

[7]

Y. N. Kyrychko and M. V. Bartuccelli, Length scales for the Navier-Stokes equations on a rotating sphere,, Phys. Lett. A, 324 (2004), 179. doi: 10.1016/j.physleta.2004.03.008. Google Scholar

[8]

C. Morosi and L. Pizzocchero, On approximate solutions of semilinear evolution equations II. Generalizations, and applications to Navier-Stokes equations,, Rev. Math. Phys., 20 (2008), 625. doi: 10.1142/S0129055X08003407. Google Scholar

[9]

C. Morosi and L. Pizzocchero, An $H^1$ setting for the Navier-Stokes equations: quantitative estimates,, Nonlinear Analysis, 74 (2011), 2398. doi: 10.1016/j.na.2010.11.043. Google Scholar

[10]

C. Morosi and L. Pizzocchero, On the constants in a basic inequality for the Euler and Navier-Stokes equations,, preprint, (). Google Scholar

[11]

C. Morosi and L. Pizzocchero, On approximate solutions of the incompressible Euler and Navier-Stokes equations,, preprint, (). Google Scholar

[12]

D. Pelinovsky and A. Sakovich, Global well-posedness of the short-pulse and sine-Gordon equations in energy space,, Comm. Partial Differential Equations, 35 (2010), 613. doi: 10.1080/03605300903509104. Google Scholar

[13]

P. Zgliczyński and K. Mischaikow, Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation,, Found. Comput. Math., 1 (2001), 255. doi: 10.1007/s102080010010. Google Scholar

[14]

P. Zgliczyński, Rigorous numerics for dissipative partial differential equations II. Periodic orbit for the Kuramoto-Sivashinsky PDE - A computer-assisted proof,, Found. Comput. Math., 4 (2004), 157. doi: 10.1007/s10208-002-0080-8. Google Scholar

show all references

References:
[1]

A. Abdelrazec and D. Pelinovsky, Convergence of the Adomian decomposition method for initial-value problems,, Numer. Methods Partial Differential Equations \textbf{27} (2011), 27 (2011), 749. doi: 10.1002/num.20549. Google Scholar

[2]

R. A. Adams, "Sobolev Spaces,'', Academic Press, (1978). Google Scholar

[3]

M. V. Bartuccelli, K. B. Blyuss and Y. N. Kyrychko, Length scales and positivity of solutions of a class of reaction-diffusion equations,, Comm. Pure Appl. Anal., 3 (2004), 25. doi: 10.3934/cpaa.2004.3.25. Google Scholar

[4]

S. I. Chernyshenko, P. Constantin, J. C. Robinson and E. S. Titi, A posteriori regularity of the three-dimensional Navier-Stokes equations from numerical computations,, J. Math. Phys., 48 (2007). doi: 10.1063/1.2372512. Google Scholar

[5]

P. Constantin and C. Foias, "Navier Stokes Equations,'', Chicago University Press, (1988). Google Scholar

[6]

T. Kato, Nonstationary flows of viscous and ideal fluids in $R^3$,, J. Funct. Anal., 9 (1972), 296. Google Scholar

[7]

Y. N. Kyrychko and M. V. Bartuccelli, Length scales for the Navier-Stokes equations on a rotating sphere,, Phys. Lett. A, 324 (2004), 179. doi: 10.1016/j.physleta.2004.03.008. Google Scholar

[8]

C. Morosi and L. Pizzocchero, On approximate solutions of semilinear evolution equations II. Generalizations, and applications to Navier-Stokes equations,, Rev. Math. Phys., 20 (2008), 625. doi: 10.1142/S0129055X08003407. Google Scholar

[9]

C. Morosi and L. Pizzocchero, An $H^1$ setting for the Navier-Stokes equations: quantitative estimates,, Nonlinear Analysis, 74 (2011), 2398. doi: 10.1016/j.na.2010.11.043. Google Scholar

[10]

C. Morosi and L. Pizzocchero, On the constants in a basic inequality for the Euler and Navier-Stokes equations,, preprint, (). Google Scholar

[11]

C. Morosi and L. Pizzocchero, On approximate solutions of the incompressible Euler and Navier-Stokes equations,, preprint, (). Google Scholar

[12]

D. Pelinovsky and A. Sakovich, Global well-posedness of the short-pulse and sine-Gordon equations in energy space,, Comm. Partial Differential Equations, 35 (2010), 613. doi: 10.1080/03605300903509104. Google Scholar

[13]

P. Zgliczyński and K. Mischaikow, Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation,, Found. Comput. Math., 1 (2001), 255. doi: 10.1007/s102080010010. Google Scholar

[14]

P. Zgliczyński, Rigorous numerics for dissipative partial differential equations II. Periodic orbit for the Kuramoto-Sivashinsky PDE - A computer-assisted proof,, Found. Comput. Math., 4 (2004), 157. doi: 10.1007/s10208-002-0080-8. Google Scholar

[1]

Chérif Amrouche, Mohamed Meslameni, Šárka Nečasová. Linearized Navier-Stokes equations in $\mathbb{R}^3$: An approach in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 901-916. doi: 10.3934/dcdss.2014.7.901

[2]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[3]

Daniel Coutand, Steve Shkoller. Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 1-23. doi: 10.3934/cpaa.2004.3.1

[4]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[5]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[6]

Hi Jun Choe, Bataa Lkhagvasuren, Minsuk Yang. Wellposedness of the Keller-Segel Navier-Stokes equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2453-2464. doi: 10.3934/cpaa.2015.14.2453

[7]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[8]

Stanislaw Migórski, Anna Ochal. Navier-Stokes problems modeled by evolution hemivariational inequalities. Conference Publications, 2007, 2007 (Special) : 731-740. doi: 10.3934/proc.2007.2007.731

[9]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[10]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[11]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[12]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[13]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[14]

Susan Friedlander, Nataša Pavlović. Remarks concerning modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 269-288. doi: 10.3934/dcds.2004.10.269

[15]

Jean-Pierre Raymond. Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1537-1564. doi: 10.3934/dcdsb.2010.14.1537

[16]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[17]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[18]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[19]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[20]

Yi Zhou, Zhen Lei. Logarithmically improved criteria for Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2715-2719. doi: 10.3934/cpaa.2013.12.2715

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]