March  2012, 11(2): 587-626. doi: 10.3934/cpaa.2012.11.587

The non-linear Schrödinger equation with non-periodic potential: infinite-bump solutions and non-degeneracy

1. 

University Science Institute, University of Iceland, Dunhaga 3, 107--Reykjavik, Iceland

2. 

Reykjavik Junior College, Lækjargata 7, 101--Reykjavik, Iceland

Received  September 2010 Revised  January 2011 Published  October 2011

The equation $-\varepsilon^2 \Delta u+F(V(x),u)=0$ is considered in $R^n$. It is assumed that $V$ possesses a set of critical points $B$ for which the values of $V$ and $D^2V$ satisfy certain compactness and uniformity properties. Under appropriate conditions on $F$ the problem is shown to possess for each $b\in B$ and small $\varepsilon>0$ a solution that concentrates at $b$ and has detailed uniformity and decay properties. This enables the construction of solutions that concentrate at arbitrary subsets of $B$ as $\varepsilon\to 0$. Examples are given in which $B$ is infinite and $V$ non-periodic.
Citation: Robert Magnus, Olivier Moschetta. The non-linear Schrödinger equation with non-periodic potential: infinite-bump solutions and non-degeneracy. Communications on Pure & Applied Analysis, 2012, 11 (2) : 587-626. doi: 10.3934/cpaa.2012.11.587
References:
[1]

N. Ackermann, A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations,, J. Funct. Analysis, 234 (2006), 277.  doi: 10.1016/j.jfa.2005.11.010.  Google Scholar

[2]

S. Angenent, The shadowing lemma for elliptic PDE,, in, (1987), 7.   Google Scholar

[3]

V. Coti Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $\R^n$,, Comm. Pure. Appl. Math., 45 (1992), 1217.  doi: 10.1002/cpa.3160451002.  Google Scholar

[4]

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, J. Funct. Analysis, 69 (1986), 397.  doi: 10.1016/0022-1236(86)90096-0.  Google Scholar

[5]

C. Gui, Existence of multi-bump solutions for non-linear Schrödinger equations via variational method,, Comm. in PDE, 21 (1996), 787.  doi: 10.1080/03605309608821208.  Google Scholar

[6]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\R^n$,, Arch. Rational Mech. Anal., 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[7]

R. Magnus, The implicit function theorem and multibump solutions of periodic partial differential equations,, Proceedings of the Royal Society of Edinburgh, 136A (2006), 559.  doi: 10.1017/S0308210500005060.  Google Scholar

[8]

R. Magnus, A scaling approach to bumps and multi-bumps for nonlinear partial differential equations,, Proceedings of the Royal Society of Edinburgh, 136A (2006), 585.  doi: 10.1017/S0308210500005072.  Google Scholar

[9]

R. Magnus and O. Moschetta, Non-degeneracy of perturbed solutions of semilinear partial differential equations,, Ann. Aca. Scient. Fennicae, 35 (2010), 75.  doi: 10.5186/aasfm.2010.3505.  Google Scholar

[10]

O. Moschetta, "The Non-linear Schrödinger Equation: Non-degeneracy and Infinite-bump Solutions,", Ph.D thesis, (2010).   Google Scholar

[11]

Y. G. Oh, Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_a$,, Commun. Partial Diff. Eq., 13 (1988), 1499.  doi: 10.1080/03605308808820585.  Google Scholar

[12]

Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential,, Comm. Math. Phys., 131 (1990), 223.  doi: 10.1007/BF02161413.  Google Scholar

[13]

J. M. Ortega, The Newton-Kantorovich theorem,, Amer. Math. Monthly, 75 (1968), 658.  doi: 10.2307/2313800.  Google Scholar

[14]

M. del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations,, Ann. Inst. H. Poincar\'e, 15 (1998), 127.   Google Scholar

[15]

M. del Pino and P. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method,, Math. Ann., 324 (2002), 1.  doi: 10.1007/s002080200327.  Google Scholar

[16]

M. del Pino, P. Felmer and K. Tanaka, An elementary construction of complex patterns in nonlinear Schrödinger equations,, Nonlinearity, 15 (2002), 1653.   Google Scholar

[17]

P. Rabier and C. Stuart, Exponential decay of the solutions of quasilinear second-order equations and Pohozaev identities,, Journal of Differential Equations, 165 (2000), 199.  doi: 10.1006/jdeq.1999.3749.  Google Scholar

[18]

L. Schwartz, "Théorie des distributions,", Hermann, (1966).   Google Scholar

[19]

C. Stuart, An introduction to elliptic equations in $\R^n$,, in, (1998), 237.   Google Scholar

[20]

N. Thandi, "On the Existence of Infinite Bump Solutions of Nonlinear Schrödinger Equations with Periodic Potentials,", Ph.D thesis, (1995).   Google Scholar

[21]

J-L. Verger-Gaugry, Covering a ball with smaller equal balls in $\mathbbR^n$,, Discrete and Computational Geometry, 33 (2005), 143.  doi: 10.1007/s00454-004-2916-2.  Google Scholar

[22]

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations,, Comm. Math. Phys., 153 (1993), 229.  doi: 10.1007/BF02096642.  Google Scholar

[23]

M. Weinstein, Modulational stability of the ground states of nonlinear Schrödinger equations,, SIAM J. Math. Anal., 16 (1985), 567.   Google Scholar

show all references

References:
[1]

N. Ackermann, A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations,, J. Funct. Analysis, 234 (2006), 277.  doi: 10.1016/j.jfa.2005.11.010.  Google Scholar

[2]

S. Angenent, The shadowing lemma for elliptic PDE,, in, (1987), 7.   Google Scholar

[3]

V. Coti Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $\R^n$,, Comm. Pure. Appl. Math., 45 (1992), 1217.  doi: 10.1002/cpa.3160451002.  Google Scholar

[4]

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, J. Funct. Analysis, 69 (1986), 397.  doi: 10.1016/0022-1236(86)90096-0.  Google Scholar

[5]

C. Gui, Existence of multi-bump solutions for non-linear Schrödinger equations via variational method,, Comm. in PDE, 21 (1996), 787.  doi: 10.1080/03605309608821208.  Google Scholar

[6]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\R^n$,, Arch. Rational Mech. Anal., 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[7]

R. Magnus, The implicit function theorem and multibump solutions of periodic partial differential equations,, Proceedings of the Royal Society of Edinburgh, 136A (2006), 559.  doi: 10.1017/S0308210500005060.  Google Scholar

[8]

R. Magnus, A scaling approach to bumps and multi-bumps for nonlinear partial differential equations,, Proceedings of the Royal Society of Edinburgh, 136A (2006), 585.  doi: 10.1017/S0308210500005072.  Google Scholar

[9]

R. Magnus and O. Moschetta, Non-degeneracy of perturbed solutions of semilinear partial differential equations,, Ann. Aca. Scient. Fennicae, 35 (2010), 75.  doi: 10.5186/aasfm.2010.3505.  Google Scholar

[10]

O. Moschetta, "The Non-linear Schrödinger Equation: Non-degeneracy and Infinite-bump Solutions,", Ph.D thesis, (2010).   Google Scholar

[11]

Y. G. Oh, Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_a$,, Commun. Partial Diff. Eq., 13 (1988), 1499.  doi: 10.1080/03605308808820585.  Google Scholar

[12]

Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential,, Comm. Math. Phys., 131 (1990), 223.  doi: 10.1007/BF02161413.  Google Scholar

[13]

J. M. Ortega, The Newton-Kantorovich theorem,, Amer. Math. Monthly, 75 (1968), 658.  doi: 10.2307/2313800.  Google Scholar

[14]

M. del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations,, Ann. Inst. H. Poincar\'e, 15 (1998), 127.   Google Scholar

[15]

M. del Pino and P. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method,, Math. Ann., 324 (2002), 1.  doi: 10.1007/s002080200327.  Google Scholar

[16]

M. del Pino, P. Felmer and K. Tanaka, An elementary construction of complex patterns in nonlinear Schrödinger equations,, Nonlinearity, 15 (2002), 1653.   Google Scholar

[17]

P. Rabier and C. Stuart, Exponential decay of the solutions of quasilinear second-order equations and Pohozaev identities,, Journal of Differential Equations, 165 (2000), 199.  doi: 10.1006/jdeq.1999.3749.  Google Scholar

[18]

L. Schwartz, "Théorie des distributions,", Hermann, (1966).   Google Scholar

[19]

C. Stuart, An introduction to elliptic equations in $\R^n$,, in, (1998), 237.   Google Scholar

[20]

N. Thandi, "On the Existence of Infinite Bump Solutions of Nonlinear Schrödinger Equations with Periodic Potentials,", Ph.D thesis, (1995).   Google Scholar

[21]

J-L. Verger-Gaugry, Covering a ball with smaller equal balls in $\mathbbR^n$,, Discrete and Computational Geometry, 33 (2005), 143.  doi: 10.1007/s00454-004-2916-2.  Google Scholar

[22]

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations,, Comm. Math. Phys., 153 (1993), 229.  doi: 10.1007/BF02096642.  Google Scholar

[23]

M. Weinstein, Modulational stability of the ground states of nonlinear Schrödinger equations,, SIAM J. Math. Anal., 16 (1985), 567.   Google Scholar

[1]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[2]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[3]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[4]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[5]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[7]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[8]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[9]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[10]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[11]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[12]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[14]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[15]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[16]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[17]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[18]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[19]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

[20]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]