\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Rough solutions for the periodic Korteweg--de~Vries equation

Abstract Related Papers Cited by
  • We show how to apply ideas from the theory of rough paths to the analysis of low-regularity solutions to non-linear dispersive equations. Our basic example will be the one dimensional Korteweg--de Vries (KdV) equation on a periodic domain and with initial condition in $F L^{\alpha,p}$ spaces. We discuss convergence of Galerkin approximations, a modified Euler scheme and the presence of a random force of white-noise type in time.
    Mathematics Subject Classification: Primary: 35Q53; Secondary: 35D99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Bessaih, M. Gubinelli and F. Russo, The evolution of a random vortex filament, Ann. Probab., 33 (2005), 1825-1855.doi: 10.1214/009117905000000323.

    [2]

    J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal., 3 (1993), 209-262.doi: 10.1007/BF01895688.

    [3]

    M. Christ, Power series solution of a nonlinear Schrödinger equation, In "Mathematical Aspects of Nonlinear Dispersive Equations," volume 163 of Ann. of Math. Stud., pages 131-155. Princeton Univ. Press, Princeton, NJ, 2007.doi: 10.1353/ajm.2003.0040.

    [4]

    M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 125 (2003), 1235-1293.doi: 10.1090/S0894-0347-03-00421-1.

    [5]

    J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbbR$ and $\mathbbT$, J. Amer. Math. Soc., 16 (2003), 705-749 (electronic).doi: 10.1007/BF02588080.

    [6]

    J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Symplectic nonsqueezing of the Korteweg-de Vries flow, Acta Math., 195 (2005), 197-252.doi: 10.1007/s004400100158.

    [7]

    L. Coutin and A. Lejay, Semi-martingales and rough paths theory, Electron. J. Probab., 10 (2005), 761-785 (electronic).

    [8]

    L. Coutin and Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Related Fields, 122 (2002), 108-140.doi: 10.1007/s004400100158.

    [9]

    A. M. DavieDifferential equations driven by rough signals: an approach via discrete approximation, Appl. Math. Res. Express. AMRX, 2, Art. ID abm009, 40 pp. doi: 10.1093/amrx/abm009.

    [10]

    A. De Bouard, A. Debussche and Y. TsutsumiPeriodic solutions of the Korteweg-de Vries equation driven by white noise, SIAM J. Math. Anal., 36 (2004/05), 815-855 (electronic). doi: 10.1137/S0036141003425301.

    [11]

    P. Friz and N. Victoir, A note on the notion of geometric rough paths, Probab. Theory Related Fields, 136 (2006), 395-416.doi: 10.1007/s00440-005-0487-7.

    [12]

    P. Friz and N. Victoir, Euler estimates for rough differential equations, J. Differential Equations, 244 (2008), 388-412.doi: 10.1016/j.jde.2007.10.008.

    [13]

    P. Friz and N. Victoir, On uniformly subelliptic operators and stochastic area, Probab. Theory Related Fields, 142 (2008), 475-523.doi: 10.1007/s00440-007-0113-y.

    [14]

    P. Friz and N. Victoir, Multidimensional stochastic processes as rough paths. Theory and applications, Cambridge Studies in Advanced Mathematics, 120. Cambridge University Press, Cambridge, 2010. xiv+656 pp. ISBN: 978-0-521-87607-0

    [15]

    J. G. Gaines and T. J. Lyons, Variable step size control in the numerical solution of stochastic differential equations, SIAM J. Appl. Math., 57 (1997), 1455-1484.doi: 10.1137/S0036139995286515.

    [16]

    G. Gallavotti, "Foundations of Fluid Dynamics," Texts and Monographs in Physics. Springer-Verlag, Berlin, 2002. Translated from the Italian.

    [17]

    J. Ginibre and Y. Tsutsumi, Uniqueness of solutions for the generalized Korteweg-de Vries equation, SIAM J. Math. Anal., 20 (1989), 1388-1425.doi: 10.1137/0520091.

    [18]

    J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain), Astérisque, (237): Exp. No. 796, 4, 163-187, 1996. Séminaire Bourbaki, Vol. 1994/95.

    [19]

    M. Gubinelli, Controlling rough paths, J. Funct. Anal., 216 (2004), 86-140.doi: 10.1016/j.jfa.2004.01.002.

    [20]

    M. Gubinelli, Rooted trees for 3D Navier-Stokes equation, Dyn. Partial Differ. Equ., 3 (2006), 161-172.

    [21]

    M. Gubinelli, A. Lejay and S. Tindel, Young integrals and SPDEs, Potential Anal., 25 (2006), 307-326.doi: 10.1007/s11118-006-9013-5.

    [22]

    M. Gubinelli, Ramification of rough paths, J. Differential Equations, 248 (2010), 693-721.doi: 10.1016/j.jde.2009.11.015.

    [23]

    M. Gubinelli and S. Tindel, Rough evolution equations, Ann. Probab., 38 (2010), 1-75.

    [24]

    Z. Guo, Global well-posedness of korteweg-de vries equation in $H^{-3/4}(R)$, Journal de Mathématiques Pures et Appliqués, 91 (2009), 583-597.doi: 10.1016/j.matpur.2009.01.012.

    [25]

    T. Kappeler and P. Topalov, Well-posedness of KdV on $H^{-1}(T)$, In Mathematisches Institut, Georg-August-Universität Göttingen: Seminars 2003/2004, pages 151-155. Universitätsdrucke Göttingen, Göttingen, 2004.doi: 10.1215/S0012-7094-06-13524-X.

    [26]

    T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, In Studies in applied mathematics, volume 8 of Adv. Math. Suppl. Stud., pages 93-128. Academic Press, New York, 1983.

    [27]

    C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.doi: 10.1090/S0894-0347-1991-1086966-0.

    [28]

    C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993) , 1-21.doi: 10.1215/S0012-7094-93-07101-3.

    [29]

    C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.doi: 10.1090/S0894-0347-96-00200-7.

    [30]

    Y. Le Jan and A. S. Sznitman, Stochastic cascades and $3$-dimensional Navier-Stokes equations, Probab. Theory Related Fields, 109 (1997), 343-366.doi: 10.1007/s004400050135.

    [31]

    T. J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana, 14 (1998), 215-310.

    [32]

    T. Lyons and Zhongmin Qian, "System Control and Rough Paths," Oxford Mathematical Monographs. Oxford University Press, Oxford, 2002. Oxford Science Publications.

    [33]

    T. Nguyen, Power series solution for the modified KdV equation, Electron. J. Differential Equations, 71 (2008), 10 pages.

    [34]

    Ya. G. Sinaĭ, A diagrammatic approach to the 3D Navier-Stokes system, Uspekhi Mat. Nauk, 60 (2005), 47-70.doi: 10.1070/RM2005v060n05ABEH003735.

    [35]

    Ya. G. Sinaĭ, Power series for solutions of the $3D$-Navier-Stokes system on $R^3$, J. Stat. Phys., 121 (2005), 779-803.doi: 10.1007/s10955-005-8670-x.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(144) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return