March  2012, 11(2): 709-733. doi: 10.3934/cpaa.2012.11.709

Rough solutions for the periodic Korteweg--de~Vries equation

1. 

CEREMADE & CNRS (UMR 7534), Université Paris Dauphine, Place du Maréchal De Lattre De Tassigny, 75775 Paris cedex 16, France

Received  March 2010 Revised  April 2011 Published  October 2011

We show how to apply ideas from the theory of rough paths to the analysis of low-regularity solutions to non-linear dispersive equations. Our basic example will be the one dimensional Korteweg--de Vries (KdV) equation on a periodic domain and with initial condition in $F L^{\alpha,p}$ spaces. We discuss convergence of Galerkin approximations, a modified Euler scheme and the presence of a random force of white-noise type in time.
Citation: Massimiliano Gubinelli. Rough solutions for the periodic Korteweg--de~Vries equation. Communications on Pure & Applied Analysis, 2012, 11 (2) : 709-733. doi: 10.3934/cpaa.2012.11.709
References:
[1]

H. Bessaih, M. Gubinelli and F. Russo, The evolution of a random vortex filament,, Ann. Probab., 33 (2005), 1825. doi: 10.1214/009117905000000323. Google Scholar

[2]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation,, Geom. Funct. Anal., 3 (1993), 209. doi: 10.1007/BF01895688. Google Scholar

[3]

M. Christ, Power series solution of a nonlinear Schrödinger equation,, In, (2007), 131. doi: 10.1353/ajm.2003.0040. Google Scholar

[4]

M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations,, Amer. J. Math., 125 (2003), 1235. doi: 10.1090/S0894-0347-03-00421-1. Google Scholar

[5]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbbR$ and $\mathbbT$,, J. Amer. Math. Soc., 16 (2003), 705. doi: 10.1007/BF02588080. Google Scholar

[6]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Symplectic nonsqueezing of the Korteweg-de Vries flow,, Acta Math., 195 (2005), 197. doi: 10.1007/s004400100158. Google Scholar

[7]

L. Coutin and A. Lejay, Semi-martingales and rough paths theory,, Electron. J. Probab., 10 (2005), 761. Google Scholar

[8]

L. Coutin and Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions,, Probab. Theory Related Fields, 122 (2002), 108. doi: 10.1007/s004400100158. Google Scholar

[9]

A. M. Davie, Differential equations driven by rough signals: an approach via discrete approximation,, Appl. Math. Res. Express. AMRX, 2 (). doi: 10.1093/amrx/abm009. Google Scholar

[10]

A. De Bouard, A. Debussche and Y. Tsutsumi, Periodic solutions of the Korteweg-de Vries equation driven by white noise,, SIAM J. Math. Anal., 36 (): 815. doi: 10.1137/S0036141003425301. Google Scholar

[11]

P. Friz and N. Victoir, A note on the notion of geometric rough paths,, Probab. Theory Related Fields, 136 (2006), 395. doi: 10.1007/s00440-005-0487-7. Google Scholar

[12]

P. Friz and N. Victoir, Euler estimates for rough differential equations,, J. Differential Equations, 244 (2008), 388. doi: 10.1016/j.jde.2007.10.008. Google Scholar

[13]

P. Friz and N. Victoir, On uniformly subelliptic operators and stochastic area,, Probab. Theory Related Fields, 142 (2008), 475. doi: 10.1007/s00440-007-0113-y. Google Scholar

[14]

P. Friz and N. Victoir, Multidimensional stochastic processes as rough paths. Theory and applications,, Cambridge Studies in Advanced Mathematics, (2010), 978. Google Scholar

[15]

J. G. Gaines and T. J. Lyons, Variable step size control in the numerical solution of stochastic differential equations,, SIAM J. Appl. Math., 57 (1997), 1455. doi: 10.1137/S0036139995286515. Google Scholar

[16]

G. Gallavotti, "Foundations of Fluid Dynamics,", Texts and Monographs in Physics. Springer-Verlag, (2002). Google Scholar

[17]

J. Ginibre and Y. Tsutsumi, Uniqueness of solutions for the generalized Korteweg-de Vries equation,, SIAM J. Math. Anal., 20 (1989), 1388. doi: 10.1137/0520091. Google Scholar

[18]

J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain),, Ast\'erisque, (1996), 163. Google Scholar

[19]

M. Gubinelli, Controlling rough paths,, J. Funct. Anal., 216 (2004), 86. doi: 10.1016/j.jfa.2004.01.002. Google Scholar

[20]

M. Gubinelli, Rooted trees for 3D Navier-Stokes equation,, Dyn. Partial Differ. Equ., 3 (2006), 161. Google Scholar

[21]

M. Gubinelli, A. Lejay and S. Tindel, Young integrals and SPDEs,, Potential Anal., 25 (2006), 307. doi: 10.1007/s11118-006-9013-5. Google Scholar

[22]

M. Gubinelli, Ramification of rough paths,, J. Differential Equations, 248 (2010), 693. doi: 10.1016/j.jde.2009.11.015. Google Scholar

[23]

M. Gubinelli and S. Tindel, Rough evolution equations,, Ann. Probab., 38 (2010), 1. Google Scholar

[24]

Z. Guo, Global well-posedness of korteweg-de vries equation in $H^{-3/4}(R)$,, Journal de Math{\'e}matiques Pures et Appliqu{\'e}s, 91 (2009), 583. doi: 10.1016/j.matpur.2009.01.012. Google Scholar

[25]

T. Kappeler and P. Topalov, Well-posedness of KdV on $H^{-1}(T)$,, In Mathematisches Institut, (2003), 151. doi: 10.1215/S0012-7094-06-13524-X. Google Scholar

[26]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation,, In Studies in applied mathematics, (1983), 93. Google Scholar

[27]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation,, J. Amer. Math. Soc., 4 (1991), 323. doi: 10.1090/S0894-0347-1991-1086966-0. Google Scholar

[28]

C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices,, Duke Math. J., 71 (1993), 1. doi: 10.1215/S0012-7094-93-07101-3. Google Scholar

[29]

C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation,, J. Amer. Math. Soc., 9 (1996), 573. doi: 10.1090/S0894-0347-96-00200-7. Google Scholar

[30]

Y. Le Jan and A. S. Sznitman, Stochastic cascades and $3$-dimensional Navier-Stokes equations,, Probab. Theory Related Fields, 109 (1997), 343. doi: 10.1007/s004400050135. Google Scholar

[31]

T. J. Lyons, Differential equations driven by rough signals,, Rev. Mat. Iberoamericana, 14 (1998), 215. Google Scholar

[32]

T. Lyons and Zhongmin Qian, "System Control and Rough Paths,", Oxford Mathematical Monographs. Oxford University Press, (2002). Google Scholar

[33]

T. Nguyen, Power series solution for the modified KdV equation,, Electron. J. Differential Equations, 71 (2008). Google Scholar

[34]

Ya. G. Sinaĭ, A diagrammatic approach to the 3D Navier-Stokes system,, Uspekhi Mat. Nauk, 60 (2005), 47. doi: 10.1070/RM2005v060n05ABEH003735. Google Scholar

[35]

Ya. G. Sinaĭ, Power series for solutions of the $3D$-Navier-Stokes system on $R^3$,, J. Stat. Phys., 121 (2005), 779. doi: 10.1007/s10955-005-8670-x. Google Scholar

show all references

References:
[1]

H. Bessaih, M. Gubinelli and F. Russo, The evolution of a random vortex filament,, Ann. Probab., 33 (2005), 1825. doi: 10.1214/009117905000000323. Google Scholar

[2]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation,, Geom. Funct. Anal., 3 (1993), 209. doi: 10.1007/BF01895688. Google Scholar

[3]

M. Christ, Power series solution of a nonlinear Schrödinger equation,, In, (2007), 131. doi: 10.1353/ajm.2003.0040. Google Scholar

[4]

M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations,, Amer. J. Math., 125 (2003), 1235. doi: 10.1090/S0894-0347-03-00421-1. Google Scholar

[5]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbbR$ and $\mathbbT$,, J. Amer. Math. Soc., 16 (2003), 705. doi: 10.1007/BF02588080. Google Scholar

[6]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Symplectic nonsqueezing of the Korteweg-de Vries flow,, Acta Math., 195 (2005), 197. doi: 10.1007/s004400100158. Google Scholar

[7]

L. Coutin and A. Lejay, Semi-martingales and rough paths theory,, Electron. J. Probab., 10 (2005), 761. Google Scholar

[8]

L. Coutin and Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions,, Probab. Theory Related Fields, 122 (2002), 108. doi: 10.1007/s004400100158. Google Scholar

[9]

A. M. Davie, Differential equations driven by rough signals: an approach via discrete approximation,, Appl. Math. Res. Express. AMRX, 2 (). doi: 10.1093/amrx/abm009. Google Scholar

[10]

A. De Bouard, A. Debussche and Y. Tsutsumi, Periodic solutions of the Korteweg-de Vries equation driven by white noise,, SIAM J. Math. Anal., 36 (): 815. doi: 10.1137/S0036141003425301. Google Scholar

[11]

P. Friz and N. Victoir, A note on the notion of geometric rough paths,, Probab. Theory Related Fields, 136 (2006), 395. doi: 10.1007/s00440-005-0487-7. Google Scholar

[12]

P. Friz and N. Victoir, Euler estimates for rough differential equations,, J. Differential Equations, 244 (2008), 388. doi: 10.1016/j.jde.2007.10.008. Google Scholar

[13]

P. Friz and N. Victoir, On uniformly subelliptic operators and stochastic area,, Probab. Theory Related Fields, 142 (2008), 475. doi: 10.1007/s00440-007-0113-y. Google Scholar

[14]

P. Friz and N. Victoir, Multidimensional stochastic processes as rough paths. Theory and applications,, Cambridge Studies in Advanced Mathematics, (2010), 978. Google Scholar

[15]

J. G. Gaines and T. J. Lyons, Variable step size control in the numerical solution of stochastic differential equations,, SIAM J. Appl. Math., 57 (1997), 1455. doi: 10.1137/S0036139995286515. Google Scholar

[16]

G. Gallavotti, "Foundations of Fluid Dynamics,", Texts and Monographs in Physics. Springer-Verlag, (2002). Google Scholar

[17]

J. Ginibre and Y. Tsutsumi, Uniqueness of solutions for the generalized Korteweg-de Vries equation,, SIAM J. Math. Anal., 20 (1989), 1388. doi: 10.1137/0520091. Google Scholar

[18]

J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain),, Ast\'erisque, (1996), 163. Google Scholar

[19]

M. Gubinelli, Controlling rough paths,, J. Funct. Anal., 216 (2004), 86. doi: 10.1016/j.jfa.2004.01.002. Google Scholar

[20]

M. Gubinelli, Rooted trees for 3D Navier-Stokes equation,, Dyn. Partial Differ. Equ., 3 (2006), 161. Google Scholar

[21]

M. Gubinelli, A. Lejay and S. Tindel, Young integrals and SPDEs,, Potential Anal., 25 (2006), 307. doi: 10.1007/s11118-006-9013-5. Google Scholar

[22]

M. Gubinelli, Ramification of rough paths,, J. Differential Equations, 248 (2010), 693. doi: 10.1016/j.jde.2009.11.015. Google Scholar

[23]

M. Gubinelli and S. Tindel, Rough evolution equations,, Ann. Probab., 38 (2010), 1. Google Scholar

[24]

Z. Guo, Global well-posedness of korteweg-de vries equation in $H^{-3/4}(R)$,, Journal de Math{\'e}matiques Pures et Appliqu{\'e}s, 91 (2009), 583. doi: 10.1016/j.matpur.2009.01.012. Google Scholar

[25]

T. Kappeler and P. Topalov, Well-posedness of KdV on $H^{-1}(T)$,, In Mathematisches Institut, (2003), 151. doi: 10.1215/S0012-7094-06-13524-X. Google Scholar

[26]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation,, In Studies in applied mathematics, (1983), 93. Google Scholar

[27]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation,, J. Amer. Math. Soc., 4 (1991), 323. doi: 10.1090/S0894-0347-1991-1086966-0. Google Scholar

[28]

C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices,, Duke Math. J., 71 (1993), 1. doi: 10.1215/S0012-7094-93-07101-3. Google Scholar

[29]

C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation,, J. Amer. Math. Soc., 9 (1996), 573. doi: 10.1090/S0894-0347-96-00200-7. Google Scholar

[30]

Y. Le Jan and A. S. Sznitman, Stochastic cascades and $3$-dimensional Navier-Stokes equations,, Probab. Theory Related Fields, 109 (1997), 343. doi: 10.1007/s004400050135. Google Scholar

[31]

T. J. Lyons, Differential equations driven by rough signals,, Rev. Mat. Iberoamericana, 14 (1998), 215. Google Scholar

[32]

T. Lyons and Zhongmin Qian, "System Control and Rough Paths,", Oxford Mathematical Monographs. Oxford University Press, (2002). Google Scholar

[33]

T. Nguyen, Power series solution for the modified KdV equation,, Electron. J. Differential Equations, 71 (2008). Google Scholar

[34]

Ya. G. Sinaĭ, A diagrammatic approach to the 3D Navier-Stokes system,, Uspekhi Mat. Nauk, 60 (2005), 47. doi: 10.1070/RM2005v060n05ABEH003735. Google Scholar

[35]

Ya. G. Sinaĭ, Power series for solutions of the $3D$-Navier-Stokes system on $R^3$,, J. Stat. Phys., 121 (2005), 779. doi: 10.1007/s10955-005-8670-x. Google Scholar

[1]

David W. Pravica, Michael J. Spurr. Unique summing of formal power series solutions to advanced and delayed differential equations. Conference Publications, 2005, 2005 (Special) : 730-737. doi: 10.3934/proc.2005.2005.730

[2]

Nancy López Reyes, Luis E. Benítez Babilonia. A discrete hierarchy of double bracket equations and a class of negative power series. Mathematical Control & Related Fields, 2017, 7 (1) : 41-52. doi: 10.3934/mcrf.2017003

[3]

Jeremy L. Marzuola. Dispersive estimates using scattering theory for matrix Hamiltonian equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 995-1035. doi: 10.3934/dcds.2011.30.995

[4]

Kenneth Hvistendahl Karlsen, Nils Henrik Risebro. On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1081-1104. doi: 10.3934/dcds.2003.9.1081

[5]

V. Mastropietro, Michela Procesi. Lindstedt series for periodic solutions of beam equations with quadratic and velocity dependent nonlinearities. Communications on Pure & Applied Analysis, 2006, 5 (1) : 1-28. doi: 10.3934/cpaa.2006.5.1

[6]

Hongqiu Chen, Jerry L. Bona. Periodic traveling--wave solutions of nonlinear dispersive evolution equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4841-4873. doi: 10.3934/dcds.2013.33.4841

[7]

Jerry L. Bona, Laihan Luo. More results on the decay of solutions to nonlinear, dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 151-193. doi: 10.3934/dcds.1995.1.151

[8]

Elena Cordero, Fabio Nicola, Luigi Rodino. Schrödinger equations with rough Hamiltonians. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4805-4821. doi: 10.3934/dcds.2015.35.4805

[9]

Claude Bardos, E. S. Titi. Loss of smoothness and energy conserving rough weak solutions for the $3d$ Euler equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 185-197. doi: 10.3934/dcdss.2010.3.185

[10]

J. Colliander, Justin Holmer, Monica Visan, Xiaoyi Zhang. Global existence and scattering for rough solutions to generalized nonlinear Schrödinger equations on $R$. Communications on Pure & Applied Analysis, 2008, 7 (3) : 467-489. doi: 10.3934/cpaa.2008.7.467

[11]

Thomas Duyckaerts, Carlos E. Kenig, Frank Merle. Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1275-1326. doi: 10.3934/cpaa.2015.14.1275

[12]

Xiao-Ping Wang, Xianmin Xu. A dynamic theory for contact angle hysteresis on chemically rough boundary. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1061-1073. doi: 10.3934/dcds.2017044

[13]

Michele V. Bartuccelli, G. Gentile, Kyriakos V. Georgiou. Kam theory, Lindstedt series and the stability of the upside-down pendulum. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 413-426. doi: 10.3934/dcds.2003.9.413

[14]

Yaozhong Hu, Yanghui Liu, David Nualart. Taylor schemes for rough differential equations and fractional diffusions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3115-3162. doi: 10.3934/dcdsb.2016090

[15]

A. Zeblah, Y. Massim, S. Hadjeri, A. Benaissa, H. Hamdaoui. Optimization for series-parallel continuous power systems with buffers under reliability constraints using ant colony. Journal of Industrial & Management Optimization, 2006, 2 (4) : 467-479. doi: 10.3934/jimo.2006.2.467

[16]

Nakao Hayashi, Seishirou Kobayashi, Pavel I. Naumkin. Nonlinear dispersive wave equations in two space dimensions. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1377-1393. doi: 10.3934/cpaa.2015.14.1377

[17]

Jijiang Sun, Shiwang Ma. Nontrivial solutions for Kirchhoff type equations via Morse theory. Communications on Pure & Applied Analysis, 2014, 13 (2) : 483-494. doi: 10.3934/cpaa.2014.13.483

[18]

Kunquan Lan, Wei Lin. Uniqueness of nonzero positive solutions of Laplacian elliptic equations arising in combustion theory. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 849-861. doi: 10.3934/dcdsb.2016.21.849

[19]

Jens Lorenz, Wilberclay G. Melo, Natã Firmino Rocha. The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3819-3841. doi: 10.3934/dcdsb.2018332

[20]

Takafumi Akahori. Global solutions of the wave-Schrödinger system with rough data. Communications on Pure & Applied Analysis, 2005, 4 (2) : 209-240. doi: 10.3934/cpaa.2005.4.209

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]