March  2012, 11(2): 747-761. doi: 10.3934/cpaa.2012.11.747

On the regularity of solutions to the Navier-Stokes equations

1. 

Politecnico di Milano - Dipartimento di Matematica "F. Brioschi", Via Bonardi 9, 20133 Milano

Received  November 2010 Revised  April 2011 Published  October 2011

This article is concerned with the incompressible Navier-Stokes equations in a three-dimensional domain. A criterion of Prodi-Serrin type up to the boundary for global existence of strong solutions is established.
Citation: Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747
References:
[1]

H. Beirão da Veiga, Remarks on the smoothness of the $L^\infty(0,T;L^3)$ solutions of the 3-D Navier-Stokes equations, Portugal. Math., 54 (1997), 381-391.  Google Scholar

[2]

C. Bjorland and A. Vasseur, Weak in space, log in time improvement of the Ladyž zenskaja-Prodi-Serrin criteria,, J. Math. Fluid Mech., ().   Google Scholar

[3]

C. H. Chan and A. Vasseur, Log improvement of the Prodi-Serrin criteria for Navier-Stokes equations, Methods Appl. Anal., 14 (2007), 197-212.  Google Scholar

[4]

L. Escauriaza, G. Seregin and V. Šverák, $L_{3,\infty}$ -solutions of the Navier-Stokes equations and backward uniqueness, Russian Math. Surveys, 58 (2003), 211-250.  Google Scholar

[5]

C. Foias, C. Guillope and R. Temam, New a priori estimates for Navier-Stokes equations in dimension 3, Comm. Partial Differential Equations, 6 (1981), 329-359.  Google Scholar

[6]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1950), 213-231.  Google Scholar

[7]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes equations, J. Differential Equations, 62 (1986), 186-212.  Google Scholar

[8]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.  Google Scholar

[9]

S. Montgomery-Smith, Conditions implying regularity of the three dimensional Navier-Stokes equation, Appl. Math., 50 (2005), 451-464.  Google Scholar

[10]

J. Nečas, M. Ruzička and V. Šverák, On Leray's self-similar solutions of the Navier-Stokes equations, Acta Math., 176 (1996), 283-294.  Google Scholar

[11]

G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173-182.  Google Scholar

[12]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 9 (1962), 187-195.  Google Scholar

[13]

H. Sohr, A regularity class for the Navier-Stokes equations in Lorentz spaces, J. Evol. Equ., 1 (2001), 441-467.  Google Scholar

[14]

H. Sohr, "The Navier-Stokes Euations," Birkhäuser Verlag, Basel, 2001.  Google Scholar

[15]

M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 437-458.  Google Scholar

[16]

S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscripta Math., 69 (1990), 237-254.  Google Scholar

[17]

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.  Google Scholar

[18]

R. Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis," CBMS-NSF Regional conference Series in Applied Mathematics, Philadelphia, 1983.  Google Scholar

[19]

R. Temam, "Navier-Stokes Equations," AMS Chelsea Publishing, Providence, 2001.  Google Scholar

show all references

References:
[1]

H. Beirão da Veiga, Remarks on the smoothness of the $L^\infty(0,T;L^3)$ solutions of the 3-D Navier-Stokes equations, Portugal. Math., 54 (1997), 381-391.  Google Scholar

[2]

C. Bjorland and A. Vasseur, Weak in space, log in time improvement of the Ladyž zenskaja-Prodi-Serrin criteria,, J. Math. Fluid Mech., ().   Google Scholar

[3]

C. H. Chan and A. Vasseur, Log improvement of the Prodi-Serrin criteria for Navier-Stokes equations, Methods Appl. Anal., 14 (2007), 197-212.  Google Scholar

[4]

L. Escauriaza, G. Seregin and V. Šverák, $L_{3,\infty}$ -solutions of the Navier-Stokes equations and backward uniqueness, Russian Math. Surveys, 58 (2003), 211-250.  Google Scholar

[5]

C. Foias, C. Guillope and R. Temam, New a priori estimates for Navier-Stokes equations in dimension 3, Comm. Partial Differential Equations, 6 (1981), 329-359.  Google Scholar

[6]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1950), 213-231.  Google Scholar

[7]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes equations, J. Differential Equations, 62 (1986), 186-212.  Google Scholar

[8]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.  Google Scholar

[9]

S. Montgomery-Smith, Conditions implying regularity of the three dimensional Navier-Stokes equation, Appl. Math., 50 (2005), 451-464.  Google Scholar

[10]

J. Nečas, M. Ruzička and V. Šverák, On Leray's self-similar solutions of the Navier-Stokes equations, Acta Math., 176 (1996), 283-294.  Google Scholar

[11]

G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173-182.  Google Scholar

[12]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 9 (1962), 187-195.  Google Scholar

[13]

H. Sohr, A regularity class for the Navier-Stokes equations in Lorentz spaces, J. Evol. Equ., 1 (2001), 441-467.  Google Scholar

[14]

H. Sohr, "The Navier-Stokes Euations," Birkhäuser Verlag, Basel, 2001.  Google Scholar

[15]

M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 437-458.  Google Scholar

[16]

S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscripta Math., 69 (1990), 237-254.  Google Scholar

[17]

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.  Google Scholar

[18]

R. Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis," CBMS-NSF Regional conference Series in Applied Mathematics, Philadelphia, 1983.  Google Scholar

[19]

R. Temam, "Navier-Stokes Equations," AMS Chelsea Publishing, Providence, 2001.  Google Scholar

[1]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052

[4]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[5]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

[6]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[7]

Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064

[8]

Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090

[9]

Xin Zhong. A blow-up criterion of strong solutions to two-dimensional nonhomogeneous micropolar fluid equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4603-4615. doi: 10.3934/dcdsb.2020115

[10]

Hayato Miyazaki. Strong blow-up instability for standing wave solutions to the system of the quadratic nonlinear Klein-Gordon equations. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2411-2445. doi: 10.3934/dcds.2020370

[11]

Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete & Continuous Dynamical Systems, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353

[12]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

[13]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[14]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[15]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[16]

Jian-Guo Liu, Zhaoyun Zhang. Existence of global weak solutions of $ p $-Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021051

[17]

Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3569-3590. doi: 10.3934/dcdsb.2018279

[18]

Fang Li, Bo You, Yao Xu. Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4267-4284. doi: 10.3934/dcdsb.2018137

[19]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[20]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (116)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]