March  2012, 11(2): 763-783. doi: 10.3934/cpaa.2012.11.763

Global solutions to the incompressible magnetohydrodynamic equations

1. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

2. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260

Received  August 2010 Revised  June 2011 Published  October 2011

An initial-boundary value problem of the three-dimensional incompressible magnetohydrodynamic (MHD) equations is considered in a bounded domain. The homogeneous Dirichlet boundary condition is prescribed on the velocity, and the perfectly conducting wall condition is prescribed on the magnetic field. The existence and uniqueness is established for both the local strong solution with large initial data and the global strong solution with small initial data. Furthermore, the weak-strong uniqueness of solutions is also proved, which shows that the weak solution is equal to the strong solution with certain initial data.
Citation: Xiaoli Li, Dehua Wang. Global solutions to the incompressible magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 763-783. doi: 10.3934/cpaa.2012.11.763
References:
[1]

H. Amann, "Linear and Quasilinear Parabolic Problems. Vol. I. Abstract, Linear Theory, (1995).   Google Scholar

[2]

J. Bergh, J. Löfström, "Interpolation spaces. An introduction," Grundlehren der, Mathematischen Wissenschaften, (1976).   Google Scholar

[3]

T. G. Cowling, "Magnetohydrodynamics,", Interscience Tracts on Physics and Astronomy, (1957).   Google Scholar

[4]

R. Danchin, Density-dependent incompressible fluids in bounded domains,, J. Math. Fluid Mech., 8 (2006), 333.   Google Scholar

[5]

B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations, Comm. Partial, Differential Equations, 22 (1997), 977.   Google Scholar

[6]

J. I. Díaz and M. B. Lerena, On the inviscid and non-resistive limit for the equations of incompressible magnetohydrodynamics,, Mathematical Models and Methods in Applied Science, 12 (2002), 1401.   Google Scholar

[7]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique,, Arch. Rational Mech. Anal., 46 (1972), 241.   Google Scholar

[8]

J. Fan and W. Yu, Global variational solutions to the compressible magnetohydrodynamic equations,, Nonlinear Analysis, 69 (2008), 3637.   Google Scholar

[9]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford Lecture Series in Mathematics and its Applications, (2004).   Google Scholar

[10]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I.,, Arch. Rational Mech. Anal., 16 (1964), 269.   Google Scholar

[11]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I. Linearized Steady Problems,", Springer-Verlag, (1994).   Google Scholar

[12]

C. Guillope, Long-time behavior of the solutions of the time-dependent Navier-Stokes equations and property of functional invariant (or attractor) sets,, C. R. Acad. Sci. Paris S\'er. I Math., 294 (1982), 221.   Google Scholar

[13]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, J. Differential Equation, 213 (2005), 235.   Google Scholar

[14]

C. He and Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations,, Journal of Functional Analysis, 227 (2005), 113.   Google Scholar

[15]

P. Houston, D. Schötzau and X. Wei, A mixed DG method for linearized incompressible magnetohydrodynamics,, J Sci. Comput., 40 (2009), 281.   Google Scholar

[16]

X. Hu and D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows,, Commun. Math. Phys., 283 (2008), 255.   Google Scholar

[17]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows,, Arch. Rational Mech. Anal., 197 (2010), 203.   Google Scholar

[18]

A. G. Kulikovskiy and G. A. Lyubimov, "Magnetohydrodynamics,", Addison-Wesley, (1965).   Google Scholar

[19]

L. Landau and E. Lifchitz, "Electrodynamics of Continuous Media,", Theoretical physics, (1990).   Google Scholar

[20]

P. L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,", Oxford Lecture Series in Mathematics and its Applications, (1996).   Google Scholar

[21]

P. L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models,", Oxford Lecture Series in Mathematics and its Applications, (1998).   Google Scholar

[22]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[23]

A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math., Phys., 89 (1983), 445.   Google Scholar

[24]

C. Miao and B. Yuan, On the well-posedness of the Cauchy problem for an MHD system in Besov spaces,, Math. Methods Appl. Sci., 32 (2009), 53.   Google Scholar

[25]

A. Novotný and I. Stravskraba, "Introduction to the Mathematical Theory of Compressible Flow,", Oxford Lecture Series in Mathematics and its Applications, (2004).   Google Scholar

[26]

P. Schmidt, On a magnetohydrodynamic problem of Euler type,, J. Differential Equation, 74 (1988), 318.   Google Scholar

[27]

M. E. Schonbek, T. P. Schonbek and E. Süli, Large-time behaviour of solutions to the magnetohydrodynamics equations,, Math. Ann., 304 (1996), 717.   Google Scholar

[28]

P. Secchi, On the equations of ideal incompressible magnetohydrodynamics,, Rend. Sem. Ma. Univ. Padova, 90 (1993), 103.   Google Scholar

[29]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.   Google Scholar

[30]

C. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$ spaces for bounded and exterior domains,, in, (1992), 1.   Google Scholar

[31]

C. Sulem, Quelques résultats de régularité pour les équations de la magnétohydrodynamique,, C. R. Acad. Sci. Paris S\'er. A-B, 285 (1977).   Google Scholar

show all references

References:
[1]

H. Amann, "Linear and Quasilinear Parabolic Problems. Vol. I. Abstract, Linear Theory, (1995).   Google Scholar

[2]

J. Bergh, J. Löfström, "Interpolation spaces. An introduction," Grundlehren der, Mathematischen Wissenschaften, (1976).   Google Scholar

[3]

T. G. Cowling, "Magnetohydrodynamics,", Interscience Tracts on Physics and Astronomy, (1957).   Google Scholar

[4]

R. Danchin, Density-dependent incompressible fluids in bounded domains,, J. Math. Fluid Mech., 8 (2006), 333.   Google Scholar

[5]

B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations, Comm. Partial, Differential Equations, 22 (1997), 977.   Google Scholar

[6]

J. I. Díaz and M. B. Lerena, On the inviscid and non-resistive limit for the equations of incompressible magnetohydrodynamics,, Mathematical Models and Methods in Applied Science, 12 (2002), 1401.   Google Scholar

[7]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique,, Arch. Rational Mech. Anal., 46 (1972), 241.   Google Scholar

[8]

J. Fan and W. Yu, Global variational solutions to the compressible magnetohydrodynamic equations,, Nonlinear Analysis, 69 (2008), 3637.   Google Scholar

[9]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford Lecture Series in Mathematics and its Applications, (2004).   Google Scholar

[10]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I.,, Arch. Rational Mech. Anal., 16 (1964), 269.   Google Scholar

[11]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I. Linearized Steady Problems,", Springer-Verlag, (1994).   Google Scholar

[12]

C. Guillope, Long-time behavior of the solutions of the time-dependent Navier-Stokes equations and property of functional invariant (or attractor) sets,, C. R. Acad. Sci. Paris S\'er. I Math., 294 (1982), 221.   Google Scholar

[13]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, J. Differential Equation, 213 (2005), 235.   Google Scholar

[14]

C. He and Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations,, Journal of Functional Analysis, 227 (2005), 113.   Google Scholar

[15]

P. Houston, D. Schötzau and X. Wei, A mixed DG method for linearized incompressible magnetohydrodynamics,, J Sci. Comput., 40 (2009), 281.   Google Scholar

[16]

X. Hu and D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows,, Commun. Math. Phys., 283 (2008), 255.   Google Scholar

[17]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows,, Arch. Rational Mech. Anal., 197 (2010), 203.   Google Scholar

[18]

A. G. Kulikovskiy and G. A. Lyubimov, "Magnetohydrodynamics,", Addison-Wesley, (1965).   Google Scholar

[19]

L. Landau and E. Lifchitz, "Electrodynamics of Continuous Media,", Theoretical physics, (1990).   Google Scholar

[20]

P. L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,", Oxford Lecture Series in Mathematics and its Applications, (1996).   Google Scholar

[21]

P. L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models,", Oxford Lecture Series in Mathematics and its Applications, (1998).   Google Scholar

[22]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[23]

A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math., Phys., 89 (1983), 445.   Google Scholar

[24]

C. Miao and B. Yuan, On the well-posedness of the Cauchy problem for an MHD system in Besov spaces,, Math. Methods Appl. Sci., 32 (2009), 53.   Google Scholar

[25]

A. Novotný and I. Stravskraba, "Introduction to the Mathematical Theory of Compressible Flow,", Oxford Lecture Series in Mathematics and its Applications, (2004).   Google Scholar

[26]

P. Schmidt, On a magnetohydrodynamic problem of Euler type,, J. Differential Equation, 74 (1988), 318.   Google Scholar

[27]

M. E. Schonbek, T. P. Schonbek and E. Süli, Large-time behaviour of solutions to the magnetohydrodynamics equations,, Math. Ann., 304 (1996), 717.   Google Scholar

[28]

P. Secchi, On the equations of ideal incompressible magnetohydrodynamics,, Rend. Sem. Ma. Univ. Padova, 90 (1993), 103.   Google Scholar

[29]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.   Google Scholar

[30]

C. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$ spaces for bounded and exterior domains,, in, (1992), 1.   Google Scholar

[31]

C. Sulem, Quelques résultats de régularité pour les équations de la magnétohydrodynamique,, C. R. Acad. Sci. Paris S\'er. A-B, 285 (1977).   Google Scholar

[1]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[2]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[3]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[4]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[5]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[6]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[7]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[10]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[11]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[12]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[13]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[14]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[15]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[18]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[19]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[20]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]