Advanced Search
Article Contents
Article Contents

Existence of nontrivial steady states for populations structured with respect to space and a continuous trait

Abstract / Introduction Related Papers Cited by
  • We prove the existence of nontrivial steady states to reaction-diffusion equations with a continuous parameter appearing in selection/mutation/competition/migration models for populations, which are structured both with respect to space and a continuous trait.
    Mathematics Subject Classification: Primary: 45K05, 92D15; Secondary: 92D25.


    \begin{equation} \\ \end{equation}
  • [1]

    H. Brezis, "Analyse Fonctionnelle," Masson, Paris, 1987.


    F. Brezzi and G. Gilardi, "Fundamentals of P.D.E. for Numerical Analysis," preprint n. 446 of Istituto di Analisi Numerica, Pavia, 1984.


    A. Calsina and S. Cuadrado, Asymptotic stability of equilibria of selection-mutation equations, J. Math. Biol., 54 (2007), 489-511.doi: doi:10.1007/s00285-006-0056-4.


    J. Carrillo, L. Desvillettes and K. Fellner, Exponential decay towards equilibrium for the inhomogeneous Aizenman-Bak model, Commun. Math. Phys., 278 (2008), 433-451.doi: doi:10.1007/s00220-007-0404-2.


    J. Carrillo, L. Desvillettes and K. Fellner, Fast-reaction limit for the inhomogeneous Aizenman-Bak model, Kinetic and Related Models, 1 (2008), 127-137.


    R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology," vol 1. Physical Origins and Classical Methods, Springer-Verlag, Berlin-Heidelberg-New York, 1990.


    L. Desvillettes, R. Ferrières and C. Prévost, "Infinite Dimensional Reaction-Diffusion for Population Dynamics," preprint n. 2003-04 du CMLA, ENS de Cachan.


    L. Desvillettes, P.-E. Jabin, S. Mischler and G. Raoul, On mutation-selection dynamics, Commun. Math. Sc., 6 (2008), 729-747.


    O. Diekmann, P.-E. Jabin, S. Mischler and B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theor. Popul. Biol., 67 (2005), 257-271.doi: doi:10.1016/j.tpb.2004.12.003.


    P. Laurençot and S. Mischler, Global existence for the discrete diffusive coagulation-fragmentation equations in L1, Rev. Mat. Iberoamericana, 18 (2002), 731-745.


    P. Laurençot and S. Mischler, The continuous coagulation-fragmentation equations with diffusion, Arch. Rational Mech. Anal., 162 (2002), 45-99.


    G. Raoul, Local stability of evolutionary attractors for continuous structured populations, to appear in Monatshefte für Mathematik, 2011.


    F. Rothe, "Global Solutions of Reaction-Diffusion Systems," Lecture Notes in Mathematics, vol. 1072. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1984.


    J. Smoller, "Shock Waves and Reaction-Diffusion Equations," Second edition, Grundlehren der Mathematischen Wissenschaften, vol. 258. Springer-Verlag, New York, 1994.

  • 加载中

Article Metrics

HTML views() PDF downloads(212) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint