- Previous Article
- CPAA Home
- This Issue
-
Next Article
Multi-bump solutions for a class of quasilinear equations on $R$
The supercooled Stefan problem in one dimension
1. | Dept. of Mathematics, UCLA, Los Angeles, CA 90095, United States |
2. | UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, United States |
References:
show all references
References:
[1] |
Jan Prüss, Jürgen Saal, Gieri Simonett. Singular limits for the two-phase Stefan problem. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5379-5405. doi: 10.3934/dcds.2013.33.5379 |
[2] |
Marianne Korten, Charles N. Moore. Regularity for solutions of the two-phase Stefan problem. Communications on Pure and Applied Analysis, 2008, 7 (3) : 591-600. doi: 10.3934/cpaa.2008.7.591 |
[3] |
Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure and Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357 |
[4] |
V. S. Manoranjan, Hong-Ming Yin, R. Showalter. On two-phase Stefan problem arising from a microwave heating process. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1155-1168. doi: 10.3934/dcds.2006.15.1155 |
[5] |
Chifaa Ghanmi, Saloua Mani Aouadi, Faouzi Triki. Recovering the initial condition in the one-phase Stefan problem. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1143-1164. doi: 10.3934/dcdss.2021087 |
[6] |
Mauro Garavello. Boundary value problem for a phase transition model. Networks and Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89 |
[7] |
Mauro Garavello, Francesca Marcellini. The Riemann Problem at a Junction for a Phase Transition Traffic Model. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5191-5209. doi: 10.3934/dcds.2017225 |
[8] |
Francesca Marcellini. Existence of solutions to a boundary value problem for a phase transition traffic model. Networks and Heterogeneous Media, 2017, 12 (2) : 259-275. doi: 10.3934/nhm.2017011 |
[9] |
Feifei Tang, Suting Wei, Jun Yang. Phase transition layers for Fife-Greenlee problem on smooth bounded domain. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1527-1552. doi: 10.3934/dcds.2018063 |
[10] |
Norbert Požár, Giang Thi Thu Vu. Long-time behavior of the one-phase Stefan problem in periodic and random media. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 991-1010. doi: 10.3934/dcdss.2018058 |
[11] |
Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281 |
[12] |
Piotr B. Mucha. Limit of kinetic term for a Stefan problem. Conference Publications, 2007, 2007 (Special) : 741-750. doi: 10.3934/proc.2007.2007.741 |
[13] |
Tien-Tsan Shieh. From gradient theory of phase transition to a generalized minimal interface problem with a contact energy. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2729-2755. doi: 10.3934/dcds.2016.36.2729 |
[14] |
Matteo Novaga, Enrico Valdinoci. The geometry of mesoscopic phase transition interfaces. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 777-798. doi: 10.3934/dcds.2007.19.777 |
[15] |
Alain Miranville. Some mathematical models in phase transition. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 271-306. doi: 10.3934/dcdss.2014.7.271 |
[16] |
Karl P. Hadeler. Stefan problem, traveling fronts, and epidemic spread. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 417-436. doi: 10.3934/dcdsb.2016.21.417 |
[17] |
Jun Yang. Coexistence phenomenon of concentration and transition of an inhomogeneous phase transition model on surfaces. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 965-994. doi: 10.3934/dcds.2011.30.965 |
[18] |
Mauro Garavello, Benedetto Piccoli. Coupling of microscopic and phase transition models at boundary. Networks and Heterogeneous Media, 2013, 8 (3) : 649-661. doi: 10.3934/nhm.2013.8.649 |
[19] |
Emanuela Caliceti, Sandro Graffi. An existence criterion for the $\mathcal{PT}$-symmetric phase transition. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1955-1967. doi: 10.3934/dcdsb.2014.19.1955 |
[20] |
Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]