March  2012, 11(2): 845-859. doi: 10.3934/cpaa.2012.11.845

The supercooled Stefan problem in one dimension

1. 

Dept. of Mathematics, UCLA, Los Angeles, CA 90095, United States

2. 

UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, United States

Received  December 2009 Revised  August 2011 Published  October 2011

We study the 1D contracting Stefan problem with two moving boundaries that describes the freezing of a supercooled liquid. The problem is borderline ill--posed with a density in excess of unity indicative of the dividing line. We show that if the initial density, $\rho_0(x)$ does not exceed one and is not too close to one in the vicinity of the boundaries, then there is a unique solution for all times which is smooth for all positive times. Conversely if the initial density is too large, singularities may occur. Here the situation is more complex: the solution may suddenly freeze without any hope of continuation or may continue to evolve after a local instant freezing but, sometimes, with the loss of uniqueness.
Citation: Lincoln Chayes, Inwon C. Kim. The supercooled Stefan problem in one dimension. Communications on Pure and Applied Analysis, 2012, 11 (2) : 845-859. doi: 10.3934/cpaa.2012.11.845
References:
[1]

I. Athanasopoulos, L. Caffarelli and S. Salsa, Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, The Annals of Mathematics, 143 (1996), 413-434.

[2]

E. Di Benedetto and A. Friedman, The ill-posed Hele-Shaw model and the Stefan problem for supercooled water, Trans. Amer. Math. Soc., 282 (1984), 183-204.

[3]

L. Chayes and G. Swindle, Hydrodynamic limits for one dimensional particle systems with moving boundaries, Ann. Probab., 24 (1996), 559-598.

[4]

L. Chayes and I. C. Kim, A two-sided contracting Stefan problem, submitted for publication.

[5]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, Volume 19, AMS, 1998.

[6]

A. Fasano and M. Primicerio, General free-boundary problems for the heat equation I, J. Math. Anal. Appl., 57 (1977), 694-723.

[7]

A. Fasano, M. Primicerio, S. Howison and J. Ockendon, Some remarks on the regularization of supercooled one-phase Stefan problems in one dimension, Quart. Appl. Math., 48 (1990), 153-168.

[8]

I. G. Götz, M. Primicerio and J. J. L. Velázquez, Asymptotic behaviour $(t\to +0)$ of the interface for the critical case of undercooled Stefan problem, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13 (2002), 143-148.

[9]

I. G. Götz and B. Zaltzman, Some criteria for the disappearance of the mushy region in the Stefan problem, Quart. Appl. Math., 53 (1995), 657-671.

[10]

M. A. Herrero and J. J. L. Velázquez, Singularity formation in the one dimensional supercooled Stefan problem, Eur. J. Appl. Math., 7 (1994), 115-150.

[11]

M. A. Herrero and J. J. L. Velázqez, The birth of a cusp in the two-dimensional, undercooled Stefan problem, Quart. Appl. Math., 58 (2000), 473-494.

[12]

H. Ishii, On a certain estimate of the free boundary in the Stefan problem, J. Differential Equations, 42 (1981), 106-115.

[13]

A. M. Meirmanov, "The Stefan Problem," Translated from the Russian by Marek Niezgdka and Anna Crowley. With an appendix by the author and I. G. Gtz. de Gruyter Expositions in Mathematics, 3. Walter de Gruyter & Co., Berlin, 1992. x+245 pp. ISBN: 3-11-011479-8

show all references

References:
[1]

I. Athanasopoulos, L. Caffarelli and S. Salsa, Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, The Annals of Mathematics, 143 (1996), 413-434.

[2]

E. Di Benedetto and A. Friedman, The ill-posed Hele-Shaw model and the Stefan problem for supercooled water, Trans. Amer. Math. Soc., 282 (1984), 183-204.

[3]

L. Chayes and G. Swindle, Hydrodynamic limits for one dimensional particle systems with moving boundaries, Ann. Probab., 24 (1996), 559-598.

[4]

L. Chayes and I. C. Kim, A two-sided contracting Stefan problem, submitted for publication.

[5]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, Volume 19, AMS, 1998.

[6]

A. Fasano and M. Primicerio, General free-boundary problems for the heat equation I, J. Math. Anal. Appl., 57 (1977), 694-723.

[7]

A. Fasano, M. Primicerio, S. Howison and J. Ockendon, Some remarks on the regularization of supercooled one-phase Stefan problems in one dimension, Quart. Appl. Math., 48 (1990), 153-168.

[8]

I. G. Götz, M. Primicerio and J. J. L. Velázquez, Asymptotic behaviour $(t\to +0)$ of the interface for the critical case of undercooled Stefan problem, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13 (2002), 143-148.

[9]

I. G. Götz and B. Zaltzman, Some criteria for the disappearance of the mushy region in the Stefan problem, Quart. Appl. Math., 53 (1995), 657-671.

[10]

M. A. Herrero and J. J. L. Velázquez, Singularity formation in the one dimensional supercooled Stefan problem, Eur. J. Appl. Math., 7 (1994), 115-150.

[11]

M. A. Herrero and J. J. L. Velázqez, The birth of a cusp in the two-dimensional, undercooled Stefan problem, Quart. Appl. Math., 58 (2000), 473-494.

[12]

H. Ishii, On a certain estimate of the free boundary in the Stefan problem, J. Differential Equations, 42 (1981), 106-115.

[13]

A. M. Meirmanov, "The Stefan Problem," Translated from the Russian by Marek Niezgdka and Anna Crowley. With an appendix by the author and I. G. Gtz. de Gruyter Expositions in Mathematics, 3. Walter de Gruyter & Co., Berlin, 1992. x+245 pp. ISBN: 3-11-011479-8

[1]

Jan Prüss, Jürgen Saal, Gieri Simonett. Singular limits for the two-phase Stefan problem. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5379-5405. doi: 10.3934/dcds.2013.33.5379

[2]

Marianne Korten, Charles N. Moore. Regularity for solutions of the two-phase Stefan problem. Communications on Pure and Applied Analysis, 2008, 7 (3) : 591-600. doi: 10.3934/cpaa.2008.7.591

[3]

Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure and Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357

[4]

V. S. Manoranjan, Hong-Ming Yin, R. Showalter. On two-phase Stefan problem arising from a microwave heating process. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1155-1168. doi: 10.3934/dcds.2006.15.1155

[5]

Chifaa Ghanmi, Saloua Mani Aouadi, Faouzi Triki. Recovering the initial condition in the one-phase Stefan problem. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1143-1164. doi: 10.3934/dcdss.2021087

[6]

Mauro Garavello. Boundary value problem for a phase transition model. Networks and Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89

[7]

Mauro Garavello, Francesca Marcellini. The Riemann Problem at a Junction for a Phase Transition Traffic Model. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5191-5209. doi: 10.3934/dcds.2017225

[8]

Francesca Marcellini. Existence of solutions to a boundary value problem for a phase transition traffic model. Networks and Heterogeneous Media, 2017, 12 (2) : 259-275. doi: 10.3934/nhm.2017011

[9]

Feifei Tang, Suting Wei, Jun Yang. Phase transition layers for Fife-Greenlee problem on smooth bounded domain. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1527-1552. doi: 10.3934/dcds.2018063

[10]

Norbert Požár, Giang Thi Thu Vu. Long-time behavior of the one-phase Stefan problem in periodic and random media. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 991-1010. doi: 10.3934/dcdss.2018058

[11]

Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281

[12]

Piotr B. Mucha. Limit of kinetic term for a Stefan problem. Conference Publications, 2007, 2007 (Special) : 741-750. doi: 10.3934/proc.2007.2007.741

[13]

Tien-Tsan Shieh. From gradient theory of phase transition to a generalized minimal interface problem with a contact energy. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2729-2755. doi: 10.3934/dcds.2016.36.2729

[14]

Matteo Novaga, Enrico Valdinoci. The geometry of mesoscopic phase transition interfaces. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 777-798. doi: 10.3934/dcds.2007.19.777

[15]

Alain Miranville. Some mathematical models in phase transition. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 271-306. doi: 10.3934/dcdss.2014.7.271

[16]

Karl P. Hadeler. Stefan problem, traveling fronts, and epidemic spread. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 417-436. doi: 10.3934/dcdsb.2016.21.417

[17]

Jun Yang. Coexistence phenomenon of concentration and transition of an inhomogeneous phase transition model on surfaces. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 965-994. doi: 10.3934/dcds.2011.30.965

[18]

Mauro Garavello, Benedetto Piccoli. Coupling of microscopic and phase transition models at boundary. Networks and Heterogeneous Media, 2013, 8 (3) : 649-661. doi: 10.3934/nhm.2013.8.649

[19]

Emanuela Caliceti, Sandro Graffi. An existence criterion for the $\mathcal{PT}$-symmetric phase transition. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1955-1967. doi: 10.3934/dcdsb.2014.19.1955

[20]

Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (139)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]