Citation: |
[1] |
Bo Berndtsson, Some recent results on estimates for the $\overline\partial$-equation, In "Contributions to Complex Analysis and Analytic Geometry," Aspects Math., E26, pages 27-42. Vieweg, Braunschweig, 1994. |
[2] |
Bo Berndtsson, $\bar\partial$ and Schrödinger operators, Math. Z., 221 (1996), 401-413. |
[3] |
Albert Boggess and Andrew Raich, Heat kernels, smoothness estimates and exponential decay, preprint, arXiv:1004.0193. |
[4] |
Albert Boggess and Andrew Raich, A simplified calculation for the fundamental solution to the heat equation on the Heisenberg group, Proc. Amer. Math. Soc., 137 (2009), 937-944. |
[5] |
Albert Boggess and Andrew Raich, The □$_b$-heat equation on quadric manifolds, J. Geom. Anal., 21 (2011), 256-275. |
[6] |
Michael Christ, Pointwise estimates for the relative fundamental solution of $\overline\partial_b$, Proc. Am. Math. Soc., 104 (1988), 787-792. |
[7] |
Michael Christ, Regularity properties of the $\overline\partial_b$ equation on weakly pseudoconvex CR manifolds of dimension 3, J. Amer. Math. Soc., 1 (1988), 587-646. |
[8] |
Michael Christ, On the $\bar\partial$ equation in weighted $L^2$ norms in $C^1$, J. Geom. Anal., 1 (1991), 193-230. |
[9] |
John Erik Fornæss and Nessim Sibony, On $L^p$ estimates for $\overline\partial$, In "Several Complex Variables and Complex Geometry," Part 3 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., 52, Part 3, pages 129-163, Providence, R.I., 1991. American Mathematical Society. |
[10] |
Siqi Fu and Emil Straube, Semi-classical analysis of Schrödinger operators and compactness in the $\overline\partial$-Neumann problem, J. Math. Anal. Appl., 271 (2002), 267-282. |
[11] |
Siqi Fu and Emil Straube, Correction to: "Semi-classical analysis of Schrödinger operators and compactness in the $\overline\partial$-Neumann problem", J. Math. Anal. Appl., 280 (2003), 195-196. |
[12] |
Ewa Ligocka, On the Forelli-Rudin construction and weighted Bergman projections, Studia Math., 94 (1989), 257-272. |
[13] |
Matei Machedon, Estimates for the parametrix of the Kohn Laplacian on certain domains, Invent. Math., 91 (1988), 339-364. |
[14] |
Matei Machedon, Szegö kernels on pseudoconvex domains with one degenerate eigenvalue, Ann. of Math., 128 (1988), 619-640. |
[15] |
Jeffrey McNeal, Boundary behavior of the Bergman kernel function in $C^2$, Duke Math. J., 58 (1989), 499-512. |
[16] |
Jeffrey McNeal, Convex domains of finite type, J. Funct. Anal., 108 (1992), 361-373. |
[17] |
Alexander Nagel, John-Pierre Rosay, Elias Stein and Stephen Wainger, Estimates for the Bergman and Szegö kernels in $C^2$, Ann. of Math., 129 (1989), 113-149. |
[18] |
Alexander Nagel and Elias Stein, The □$_b$-heat equation on pseudoconvex manifolds of finite type in $C^2$, Math. Z., 238 (2001), 37-88. |
[19] |
Alexander Nagel and Elias Stein, The $\bar\partial_b$-complex on decoupled domains in $C^n$, $n \geq 3$, Ann. of Math., 164 (2006), 649-713. |
[20] |
Alexander Nagel, Elias Stein and Stephen Wainger, Balls and metrics defined by vector fields I: Basic properties, Acta Math., 155 (1985), 103-147. |
[21] |
Andrew Raich, Heat equations in $R\times C$, J. Funct. Anal., 240 (2006), 1-35. |
[22] |
Andrew Raich, One-parameter families of operators in $C$, J. Geom. Anal., 16 (2006), 353-374. |
[23] |
Andrew Raich, Pointwise estimates of relative fundamental solutions for heat equations in $R\times C$, Math. Z., 256 (2007), 193-220. |
[24] |
Brian Street, The □$_b$-heat equation and multipliers via the wave equation, Math. Z., 263 (2009), 861-886. |