-
Previous Article
Large time behavior for the full compressible magnetohydrodynamic flows
- CPAA Home
- This Issue
-
Next Article
Nonexistence of solutions for nonlinear differential inequalities with gradient nonlinearities
Multiple solutions of second-order ordinary differential equation via Morse theory
1. | School of Mathematics Sciences, Shanxi University, Taiyuan, Shanxi 030006, China |
2. | School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083 |
References:
[1] |
R. A. Adams, "Sobolev Spaces,", Academic Press, (1975). Google Scholar |
[2] |
K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems,", Birkh\, (1993).
|
[3] |
K. C. Chang, S. J. Li and J. Q. Liu, Remarks on multiple solutions for asymptotically linear elliptic boundary value problem,, Topol. Methods Nonlinear Anal., 3 (1994), 179.
|
[4] |
Jorge Cossio, Sigifredo Herrón and Carlos Vélez, Existence of solutions for an asymptotically linear Dirichlet problem via Lazer-Solimini results,, Topol. Methods Nonlinear Anal., 71 (2009), 66.
doi: 10.1016/j.na.2008.10.031. |
[5] |
C. Fabry and A. Fonda, Periodic solutions of nonlinear differential equations with double resonance,, Topol. Methods Nonlinear Anal., 157 (1990), 99.
|
[6] |
Leszek Gasiński and Nikolaos S. Papageorgiou, A multiplicity theorem for double resonant periodic problems,, Advanced Nonlinear Studies, 10 (2010), 819.
|
[7] |
R. Iannacci, M. N. Nkashama and J. R. Ward, Jr., Nonlinear second order elliptic partial differential equations at resonance,, Trans. of the AMS, 311 (1989), 711.
doi: 10.1090/s0002-9947-1989-0951886-3. |
[8] |
S. Kesavan, "Nonlinear Functional Analysis,", (A First Course) in Text and Reading in Mathematics, (2004). Google Scholar |
[9] |
E. Landesman and A. C. Lazer, Nonlinear perturbations of linear eigenvalues problem at resonance,, J. Math. Mech., 19 (1970), 609. Google Scholar |
[10] |
A. C. Lazer and S. Solimini, Nontrivial solutions of operator equations and Morse indices of critical points of min-max type,, Topol. Methods Nonlinear Anal., 12 (1988), 761.
|
[11] |
Wenduan Lu, "Variational Methods in Differential Equations,", Sichuan University Publishers, (1995). Google Scholar |
[12] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A degree theoretic approach for multiple solutions of constant sign for nonlinear elliptic equations,, Manuscripta Math., 124 (2007), 507.
doi: 10.1007/s00229-007-0127-x. |
[13] |
S. Li and W. Zou, The computations of the critical groups with an application to elliptic resonant problems at a higher eigenvalue,, J. Math. Anal. Appl., 235 (1999), 237.
doi: 10.1016/jmaa.1999.6396. |
[14] |
Zhanping Liang and Jiabao Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance,, J. Math. Anal. Appl., 354 (2009), 147.
doi: 10.1016/j.jmaa.2008.12.053. |
[15] |
Shibo Liu, Remarks on multiple solutions for elliptic resonant problems,, J. Math. Anal. Appl., 336 (2007), 498.
doi: 10.1016/j.jmaa.2007.01.051. |
[16] |
J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer-Verlag, (1989).
|
[17] |
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Issues Math. Ed., (1986).
|
[18] |
S. Robinson, Double resonance in semilinear elliptic boundary value problems over bounded and unbounded domains,, Nonlinear Analysis, 21 (1993), 407.
|
[19] |
S. Robinson, Multiple solutions for semilinear elliptic boundary value problem at resonance,, Electron. J. Differential Equations, 1 (1995), 1.
|
[20] |
J. B. Su, Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues,, Nonlinear Anal., 48 (2002), 881.
doi: 10.1016/s0362-54x100100221-2. |
[21] |
J. B. Su and Leiga Zhao, Multiple periodic solutions of ordinary differential for equations with double resonance,, Nonlinear Anal., 70 (2009), 1520.
doi: 10.1016/j.na.2008.04.012. |
[22] |
C. L. Tang, Periodic solutions of nonautonomous second order systems with sublinear nonlinearity,, Proc. Amer. Math. Soc., 126 (1998), 3263.
doi: 10.1090/S0002-9939-98-04706-6. |
[23] |
J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations,, Appl. Math. Optim., 12 (1984), 191.
doi: 10.1007/BF01449041. |
[24] |
Chiara Zanini, Rotation numbers, eigenvalues, and the Poincar-Birkhoff theorem,, J. Math. Anal. Appl., 279 (2003), 290.
doi: 10.1016/S0022-247X(03)00012-X. |
[25] |
W. Zou and J. Q. Liu, Multiple solutions for resonant elliptic equations via local linking theory and morse theory,, Journal of Differential Equations, 170 (2001), 68.
doi: 10.1006/jdeq.2000.3812. |
show all references
References:
[1] |
R. A. Adams, "Sobolev Spaces,", Academic Press, (1975). Google Scholar |
[2] |
K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems,", Birkh\, (1993).
|
[3] |
K. C. Chang, S. J. Li and J. Q. Liu, Remarks on multiple solutions for asymptotically linear elliptic boundary value problem,, Topol. Methods Nonlinear Anal., 3 (1994), 179.
|
[4] |
Jorge Cossio, Sigifredo Herrón and Carlos Vélez, Existence of solutions for an asymptotically linear Dirichlet problem via Lazer-Solimini results,, Topol. Methods Nonlinear Anal., 71 (2009), 66.
doi: 10.1016/j.na.2008.10.031. |
[5] |
C. Fabry and A. Fonda, Periodic solutions of nonlinear differential equations with double resonance,, Topol. Methods Nonlinear Anal., 157 (1990), 99.
|
[6] |
Leszek Gasiński and Nikolaos S. Papageorgiou, A multiplicity theorem for double resonant periodic problems,, Advanced Nonlinear Studies, 10 (2010), 819.
|
[7] |
R. Iannacci, M. N. Nkashama and J. R. Ward, Jr., Nonlinear second order elliptic partial differential equations at resonance,, Trans. of the AMS, 311 (1989), 711.
doi: 10.1090/s0002-9947-1989-0951886-3. |
[8] |
S. Kesavan, "Nonlinear Functional Analysis,", (A First Course) in Text and Reading in Mathematics, (2004). Google Scholar |
[9] |
E. Landesman and A. C. Lazer, Nonlinear perturbations of linear eigenvalues problem at resonance,, J. Math. Mech., 19 (1970), 609. Google Scholar |
[10] |
A. C. Lazer and S. Solimini, Nontrivial solutions of operator equations and Morse indices of critical points of min-max type,, Topol. Methods Nonlinear Anal., 12 (1988), 761.
|
[11] |
Wenduan Lu, "Variational Methods in Differential Equations,", Sichuan University Publishers, (1995). Google Scholar |
[12] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A degree theoretic approach for multiple solutions of constant sign for nonlinear elliptic equations,, Manuscripta Math., 124 (2007), 507.
doi: 10.1007/s00229-007-0127-x. |
[13] |
S. Li and W. Zou, The computations of the critical groups with an application to elliptic resonant problems at a higher eigenvalue,, J. Math. Anal. Appl., 235 (1999), 237.
doi: 10.1016/jmaa.1999.6396. |
[14] |
Zhanping Liang and Jiabao Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance,, J. Math. Anal. Appl., 354 (2009), 147.
doi: 10.1016/j.jmaa.2008.12.053. |
[15] |
Shibo Liu, Remarks on multiple solutions for elliptic resonant problems,, J. Math. Anal. Appl., 336 (2007), 498.
doi: 10.1016/j.jmaa.2007.01.051. |
[16] |
J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer-Verlag, (1989).
|
[17] |
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Issues Math. Ed., (1986).
|
[18] |
S. Robinson, Double resonance in semilinear elliptic boundary value problems over bounded and unbounded domains,, Nonlinear Analysis, 21 (1993), 407.
|
[19] |
S. Robinson, Multiple solutions for semilinear elliptic boundary value problem at resonance,, Electron. J. Differential Equations, 1 (1995), 1.
|
[20] |
J. B. Su, Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues,, Nonlinear Anal., 48 (2002), 881.
doi: 10.1016/s0362-54x100100221-2. |
[21] |
J. B. Su and Leiga Zhao, Multiple periodic solutions of ordinary differential for equations with double resonance,, Nonlinear Anal., 70 (2009), 1520.
doi: 10.1016/j.na.2008.04.012. |
[22] |
C. L. Tang, Periodic solutions of nonautonomous second order systems with sublinear nonlinearity,, Proc. Amer. Math. Soc., 126 (1998), 3263.
doi: 10.1090/S0002-9939-98-04706-6. |
[23] |
J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations,, Appl. Math. Optim., 12 (1984), 191.
doi: 10.1007/BF01449041. |
[24] |
Chiara Zanini, Rotation numbers, eigenvalues, and the Poincar-Birkhoff theorem,, J. Math. Anal. Appl., 279 (2003), 290.
doi: 10.1016/S0022-247X(03)00012-X. |
[25] |
W. Zou and J. Q. Liu, Multiple solutions for resonant elliptic equations via local linking theory and morse theory,, Journal of Differential Equations, 170 (2001), 68.
doi: 10.1006/jdeq.2000.3812. |
[1] |
Marian Gidea. Leray functor and orbital Conley index for non-invariant sets. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 617-630. doi: 10.3934/dcds.1999.5.617 |
[2] |
Zongming Guo, Zhongyuan Liu, Juncheng Wei, Feng Zhou. Bifurcations of some elliptic problems with a singular nonlinearity via Morse index. Communications on Pure & Applied Analysis, 2011, 10 (2) : 507-525. doi: 10.3934/cpaa.2011.10.507 |
[3] |
Philip Korman. Infinitely many solutions and Morse index for non-autonomous elliptic problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 31-46. doi: 10.3934/cpaa.2020003 |
[4] |
Anna Go??biewska, S?awomir Rybicki. Equivariant Conley index versus degree for equivariant gradient maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 985-997. doi: 10.3934/dcdss.2013.6.985 |
[5] |
Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107 |
[6] |
Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823 |
[7] |
Claudianor O. Alves. Existence of periodic solution for a class of systems involving nonlinear wave equations. Communications on Pure & Applied Analysis, 2005, 4 (3) : 487-498. doi: 10.3934/cpaa.2005.4.487 |
[8] |
Jingli Ren, Zhibo Cheng, Stefan Siegmund. Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 385-392. doi: 10.3934/dcdsb.2011.16.385 |
[9] |
Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789 |
[10] |
Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365 |
[11] |
Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121 |
[12] |
Gui-Dong Li, Yong-Yong Li, Xiao-Qi Liu, Chun-Lei Tang. A positive solution of asymptotically periodic Choquard equations with locally defined nonlinearities. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1351-1365. doi: 10.3934/cpaa.2020066 |
[13] |
Philip Schrader. Morse theory for elastica. Journal of Geometric Mechanics, 2016, 8 (2) : 235-256. doi: 10.3934/jgm.2016006 |
[14] |
María Barbero Liñán, Hernán Cendra, Eduardo García Toraño, David Martín de Diego. Morse families and Dirac systems. Journal of Geometric Mechanics, 2019, 11 (4) : 487-510. doi: 10.3934/jgm.2019024 |
[15] |
Yongkun Li, Pan Wang. Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 463-473. doi: 10.3934/dcdss.2017022 |
[16] |
Pablo Amster, Pablo De Nápoli. Non-asymptotic Lazer-Leach type conditions for a nonlinear oscillator. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 757-767. doi: 10.3934/dcds.2011.29.757 |
[17] |
Yuxia Guo, Ting Liu. Lazer-McKenna conjecture for higher order elliptic problem with critical growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 1159-1189. doi: 10.3934/dcds.2020074 |
[18] |
Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319 |
[19] |
Feiyao Ma, Lihe Wang. Schauder type estimates of linearized Mullins-Sekerka problem. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1037-1050. doi: 10.3934/cpaa.2012.11.1037 |
[20] |
Giuseppe Da Prato. Schauder estimates for some perturbation of an infinite dimensional Ornstein--Uhlenbeck operator. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 637-647. doi: 10.3934/dcdss.2013.6.637 |
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]