January  2012, 11(1): 97-113. doi: 10.3934/cpaa.2012.11.97

Qualitative analysis and travelling wave solutions for the SI model with vertical transmission

1. 

UMR CNRS 5251, I.M.B. and INRIA Bordeaux Sud-ouest Anubis, case 36, UFR Sciences et Modélisation, Université Victor Segalen Bordeaux 2, 3 ter, place de la Victoire - 33076 Bordeaux cedex

2. 

Institut de Mathématiques de Bordeaux, UMR CNRS 5251, INRIA Bordeaux sud-ouest, EPI Anubis, UFR Sciences de la Vie, Université Victor Segalen Bordeaux 2, 3 ter Place de la Victoire, 33076 Bordeaux, France

Received  January 2010 Revised  August 2010 Published  September 2011

In this note we analyze a spatially structured SI epidemic model with vertical transmission, a logistic effect on vital dynamics and a density dependent incidence. For a bounded spatial domain we show global stability of the endemic state when it is feasible. Then we look at the existence of travelling wave solutions connecting the endemic and the disease free states.
Citation: Arnaud Ducrot, Michel Langlais, Pierre Magal. Qualitative analysis and travelling wave solutions for the SI model with vertical transmission. Communications on Pure & Applied Analysis, 2012, 11 (1) : 97-113. doi: 10.3934/cpaa.2012.11.97
References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford Univ. Press, (1991).   Google Scholar

[2]

A. Arapostathis, M. K. Ghosh and S. I. Marcus, Harnack's inequality for cooperative weakly coupled elliptic systems,, Comm. Part. Diff. Eq., 24 (1999), 1555.   Google Scholar

[3]

F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology,", Springer, (2000).   Google Scholar

[4]

S. Busenberg and K. C. Cooke, "Vertically Transmitted Diseases,", Biomathematics volume 23, (1993).   Google Scholar

[5]

V. Capasso, "Mathematical Structures of Epidemic Systems,", Lecture Notes in Biomathematics volume 97, (1993).   Google Scholar

[6]

Z. Q. Chen and Z. Zhao, Harnack principle for weakly coupled elliptic system,, J. Diff. Eq., 139 (1997), 261.   Google Scholar

[7]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,", Wiley, (2000).   Google Scholar

[8]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. of Eugenics, 7 (1937), 355.   Google Scholar

[9]

W. E. Fitzgibbon and M. Langlais, A diffusive S.I.S. model describing the propagation of F.I.V.,, Communications of Applied Analysis, 7 (2003), 387.   Google Scholar

[10]

W. E. Fitzgibbon and M. Langlais, Simple models for the transmission of microparasites between host populations living on non coincident spatial domains,, p. 115-164, (1936), 115.   Google Scholar

[11]

W. E. Fitzgibbon, M. Langlais and J. J. Morgan, A mathematical model of the spread of Feline Leukemia Virus (FeLV) through a highly heterogeneous spatial domain,, SIAM J. Math. Analysis, 33 (2001), 570.   Google Scholar

[12]

B. S. Goh, Global stability in a class of predator-prey models,, Bull. Math. Biol., 40 (1978), 525.   Google Scholar

[13]

J. Hale, "Asymptotic Behavior of Dissipation Systems,", American Mathematical Society, (1988).   Google Scholar

[14]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Bulletin Universit\'e d'Etat Moscou, (1937), 1.   Google Scholar

[15]

J. J. Morgan, Boundedness and decay results for reaction diffusion systems,, SIAM J. Math. Anal., 20 (1990), 1128.   Google Scholar

[16]

J. D. Murray, "Mathematical Biology II: Spatial Models and Biomedical Applications,", Springer-Verlag, (2003).   Google Scholar

[17]

S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models,, in, (2007), 99.   Google Scholar

[18]

S. Ruan and J. Wu, Modeling spatial spread of communicable diseases involving animal hosts, in "Spatial Ecology,'', Chapman & Hall/CRC, (2009), 293.   Google Scholar

[19]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations," 2nd, edition, (1994).   Google Scholar

[20]

H. R. Thieme, "Mathematics in Population Biology,", Princeton Univ. Press, (2003).   Google Scholar

[21]

A. Volpert, Vit. Volpert and Vl. Volpert, "Travelling Wave Solutions of Parabolic Systems,", Monographs, (1994).   Google Scholar

show all references

References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford Univ. Press, (1991).   Google Scholar

[2]

A. Arapostathis, M. K. Ghosh and S. I. Marcus, Harnack's inequality for cooperative weakly coupled elliptic systems,, Comm. Part. Diff. Eq., 24 (1999), 1555.   Google Scholar

[3]

F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology,", Springer, (2000).   Google Scholar

[4]

S. Busenberg and K. C. Cooke, "Vertically Transmitted Diseases,", Biomathematics volume 23, (1993).   Google Scholar

[5]

V. Capasso, "Mathematical Structures of Epidemic Systems,", Lecture Notes in Biomathematics volume 97, (1993).   Google Scholar

[6]

Z. Q. Chen and Z. Zhao, Harnack principle for weakly coupled elliptic system,, J. Diff. Eq., 139 (1997), 261.   Google Scholar

[7]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,", Wiley, (2000).   Google Scholar

[8]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. of Eugenics, 7 (1937), 355.   Google Scholar

[9]

W. E. Fitzgibbon and M. Langlais, A diffusive S.I.S. model describing the propagation of F.I.V.,, Communications of Applied Analysis, 7 (2003), 387.   Google Scholar

[10]

W. E. Fitzgibbon and M. Langlais, Simple models for the transmission of microparasites between host populations living on non coincident spatial domains,, p. 115-164, (1936), 115.   Google Scholar

[11]

W. E. Fitzgibbon, M. Langlais and J. J. Morgan, A mathematical model of the spread of Feline Leukemia Virus (FeLV) through a highly heterogeneous spatial domain,, SIAM J. Math. Analysis, 33 (2001), 570.   Google Scholar

[12]

B. S. Goh, Global stability in a class of predator-prey models,, Bull. Math. Biol., 40 (1978), 525.   Google Scholar

[13]

J. Hale, "Asymptotic Behavior of Dissipation Systems,", American Mathematical Society, (1988).   Google Scholar

[14]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Bulletin Universit\'e d'Etat Moscou, (1937), 1.   Google Scholar

[15]

J. J. Morgan, Boundedness and decay results for reaction diffusion systems,, SIAM J. Math. Anal., 20 (1990), 1128.   Google Scholar

[16]

J. D. Murray, "Mathematical Biology II: Spatial Models and Biomedical Applications,", Springer-Verlag, (2003).   Google Scholar

[17]

S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models,, in, (2007), 99.   Google Scholar

[18]

S. Ruan and J. Wu, Modeling spatial spread of communicable diseases involving animal hosts, in "Spatial Ecology,'', Chapman & Hall/CRC, (2009), 293.   Google Scholar

[19]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations," 2nd, edition, (1994).   Google Scholar

[20]

H. R. Thieme, "Mathematics in Population Biology,", Princeton Univ. Press, (2003).   Google Scholar

[21]

A. Volpert, Vit. Volpert and Vl. Volpert, "Travelling Wave Solutions of Parabolic Systems,", Monographs, (1994).   Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[3]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[6]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[7]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[8]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[9]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[14]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[15]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[16]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[17]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[18]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[19]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[20]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (31)

Other articles
by authors

[Back to Top]