[1]
|
R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control," Oxford Univ. Press, Oxford, U.K., 1991.
|
[2]
|
A. Arapostathis, M. K. Ghosh and S. I. Marcus, Harnack's inequality for cooperative weakly coupled elliptic systems, Comm. Part. Diff. Eq., 24 (1999), 1555-1571.
|
[3]
|
F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology," Springer, New York, 2000.
|
[4]
|
S. Busenberg and K. C. Cooke, "Vertically Transmitted Diseases," Biomathematics volume 23, Springer-Verlag, New York, 1993.
|
[5]
|
V. Capasso, "Mathematical Structures of Epidemic Systems," Lecture Notes in Biomathematics volume 97, Springer-Verlag, Berlin, 1993.
|
[6]
|
Z. Q. Chen and Z. Zhao, Harnack principle for weakly coupled elliptic system, J. Diff. Eq., 139 (1997), 261-282.
|
[7]
|
O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation," Wiley, Chichester, U.K., 2000.
|
[8]
|
R. A. Fisher, The wave of advance of advantageous genes, Ann. of Eugenics, 7 (1937), 355-369.
|
[9]
|
W. E. Fitzgibbon and M. Langlais, A diffusive S.I.S. model describing the propagation of F.I.V., Communications of Applied Analysis, 7 (2003), 387-4038.
|
[10]
|
W. E. Fitzgibbon and M. Langlais, Simple models for the transmission of microparasites between host populations living on non coincident spatial domains, p. 115-164, Lecture Notes in Mathematics (Mathematical Biosciences Subseries) volume 1936, P. Magal and S. Ruan eds, Springer-Verlag, New York, 2008.
|
[11]
|
W. E. Fitzgibbon, M. Langlais and J. J. Morgan, A mathematical model of the spread of Feline Leukemia Virus (FeLV) through a highly heterogeneous spatial domain, SIAM J. Math. Analysis, 33 (2001), p. 570-588.
|
[12]
|
B. S. Goh, Global stability in a class of predator-prey models, Bull. Math. Biol., 40 (1978), p. 525-533.
|
[13]
|
J. Hale, "Asymptotic Behavior of Dissipation Systems," American Mathematical Society, Providence, Rhode Island, 1988.
|
[14]
|
A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université d'Etat Moscou, Bjul. Moskowskogo Gos. Univ., 1937, 1-26.
|
[15]
|
J. J. Morgan, Boundedness and decay results for reaction diffusion systems, SIAM J. Math. Anal., 20 (1990), p. 1128-1149.
|
[16]
|
J. D. Murray, "Mathematical Biology II: Spatial Models and Biomedical Applications," Springer-Verlag, Berlin 2003.
|
[17]
|
S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models, in "Mathematics for Life Science and Medicine," Eds. by Y. Takeuchi, K. Sato and Y. Iwasa, Springer-Verlag, Berlin, (2007) pp. 99-122.
|
[18]
|
S. Ruan and J. Wu, Modeling spatial spread of communicable diseases involving animal hosts, in "Spatial Ecology,'' Chapman & Hall/CRC, Boca Raton, FL, (2009) pp. 293-316.
|
[19]
|
J. Smoller, "Shock Waves and Reaction-Diffusion Equations," 2nd edition, Springer-Verlag, New York, 1994.
|
[20]
|
H. R. Thieme, "Mathematics in Population Biology," Princeton Univ. Press, Princeton, NJ, 2003.
|
[21]
|
A. Volpert, Vit. Volpert and Vl. Volpert, "Travelling Wave Solutions of Parabolic Systems," Monographs, vol. 140, AMS Providence, RI, 1994.
|