May  2012, 11(3): 973-980. doi: 10.3934/cpaa.2012.11.973

A new regularity criterion for the 3D MHD equations in $R^3$

1. 

Department of Mathematics, University of Mostaganem, Box 227, Mostaganem 27000

Received  October 2010 Revised  April 2011 Published  December 2011

In this paper, we establish some improved regularity conditions for the 3D incompressible magnetohydrodynamic equations via only two components of the velocity and magnetic fields. This is an improvement of the result given by Ji and Lee [8].
Citation: Sadek Gala. A new regularity criterion for the 3D MHD equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (3) : 973-980. doi: 10.3934/cpaa.2012.11.973
References:
[1]

H.-O. Bae and H.-J. Choe, A regularity criterion for the Navier-Stokes equations,, Comm. Partial Differential Equations, 32 (2007), 1173.  doi: 10.1080/03605300701257500.  Google Scholar

[2]

R. Caflisch, I. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD,, Comm. Math. Phys., 184 (1997), 443.  doi: 10.1007/s002200050067.  Google Scholar

[3]

C. Cao and E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations,, Indiana Univ. Math. J., 57 (2008), 2643.  doi: 10.1512/iumj.2008.57.3719.  Google Scholar

[4]

Q. Chen and C. Miao, Existence theorem and blow-up criterion of the strong solutions to the two-fluid MHD equations in $R^3$,, J. Differential Equations, 239 (2007), 251.  doi: 10.1016/j.jde.2007.03.029.  Google Scholar

[5]

Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations,, Comm. Math. Phys., 284 (2008), 919.  doi: 10.1007/s00220-008-0545-y.  Google Scholar

[6]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[7]

C. He and Z. Xin, On the regularity of solutions to the magnetohydrodynamic equations,, J. Differential Equations, 213 (2005), 235.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[8]

E. Ji and J. Lee, Some regularity criteria for the 3D incompressible magnetohydrodynamics,, J. Math. Anal. Appl., 369 (2010), 317.  doi: 10.1016/j.jmaa.2010.03.015.  Google Scholar

[9]

S. Gala and P. G. Lemarié-Rieusset, Multipliers between Sobolev spaces and fractional differentiation,, J. Math. Anal. Appl., 322 (2006), 1030.  doi: 10.1016/j.jmaa.2005.07.043.  Google Scholar

[10]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453.  doi: 10.1088/0951-7715/19/2/012.  Google Scholar

[11]

J. Neustupa, A. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, Topics in Mathematical Fluid Mechanics,, Quaderni di Matematica Vol. 10 Seconda Universita di Napoli, (2002), 163.   Google Scholar

[12]

P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity,, Appl. Math., 49 (2004), 483.  doi: 10.1023/B:APOM.0000048124.64244.7e.  Google Scholar

[13]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[14]

J. Wu, Viscous and inviscid magnetohydrodynamics equations,, J. Anal. Math., 73 (1997), 251.  doi: 10.1007/BF02788146.  Google Scholar

[15]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, Discrete Contin. Dyn. Syst., 12 (2005), 881.  doi: 10.3934/dcds.2005.12.881.  Google Scholar

[16]

Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space,, Z. Angew. Math. Phys., 61 (2010), 193.  doi: 10.1007/s00033-009-0023-1.  Google Scholar

[17]

Y. Zhou and S. Gala, On the existence of global solutions for the magneto-hydrodynamic equations,, Preprint, (2010).   Google Scholar

show all references

References:
[1]

H.-O. Bae and H.-J. Choe, A regularity criterion for the Navier-Stokes equations,, Comm. Partial Differential Equations, 32 (2007), 1173.  doi: 10.1080/03605300701257500.  Google Scholar

[2]

R. Caflisch, I. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD,, Comm. Math. Phys., 184 (1997), 443.  doi: 10.1007/s002200050067.  Google Scholar

[3]

C. Cao and E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations,, Indiana Univ. Math. J., 57 (2008), 2643.  doi: 10.1512/iumj.2008.57.3719.  Google Scholar

[4]

Q. Chen and C. Miao, Existence theorem and blow-up criterion of the strong solutions to the two-fluid MHD equations in $R^3$,, J. Differential Equations, 239 (2007), 251.  doi: 10.1016/j.jde.2007.03.029.  Google Scholar

[5]

Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations,, Comm. Math. Phys., 284 (2008), 919.  doi: 10.1007/s00220-008-0545-y.  Google Scholar

[6]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[7]

C. He and Z. Xin, On the regularity of solutions to the magnetohydrodynamic equations,, J. Differential Equations, 213 (2005), 235.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[8]

E. Ji and J. Lee, Some regularity criteria for the 3D incompressible magnetohydrodynamics,, J. Math. Anal. Appl., 369 (2010), 317.  doi: 10.1016/j.jmaa.2010.03.015.  Google Scholar

[9]

S. Gala and P. G. Lemarié-Rieusset, Multipliers between Sobolev spaces and fractional differentiation,, J. Math. Anal. Appl., 322 (2006), 1030.  doi: 10.1016/j.jmaa.2005.07.043.  Google Scholar

[10]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453.  doi: 10.1088/0951-7715/19/2/012.  Google Scholar

[11]

J. Neustupa, A. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, Topics in Mathematical Fluid Mechanics,, Quaderni di Matematica Vol. 10 Seconda Universita di Napoli, (2002), 163.   Google Scholar

[12]

P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity,, Appl. Math., 49 (2004), 483.  doi: 10.1023/B:APOM.0000048124.64244.7e.  Google Scholar

[13]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[14]

J. Wu, Viscous and inviscid magnetohydrodynamics equations,, J. Anal. Math., 73 (1997), 251.  doi: 10.1007/BF02788146.  Google Scholar

[15]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, Discrete Contin. Dyn. Syst., 12 (2005), 881.  doi: 10.3934/dcds.2005.12.881.  Google Scholar

[16]

Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space,, Z. Angew. Math. Phys., 61 (2010), 193.  doi: 10.1007/s00033-009-0023-1.  Google Scholar

[17]

Y. Zhou and S. Gala, On the existence of global solutions for the magneto-hydrodynamic equations,, Preprint, (2010).   Google Scholar

[1]

Qiao Liu, Shangbin Cui. Regularizing rate estimates for mild solutions of the incompressible Magneto-hydrodynamic system. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1643-1660. doi: 10.3934/cpaa.2012.11.1643

[2]

Jinbo Geng, Xiaochun Chen, Sadek Gala. On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space. Communications on Pure & Applied Analysis, 2011, 10 (2) : 583-592. doi: 10.3934/cpaa.2011.10.583

[3]

Jens Lorenz, Wilberclay G. Melo, Natã Firmino Rocha. The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3819-3841. doi: 10.3934/dcdsb.2018332

[4]

Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 357-371. doi: 10.3934/dcdsb.2011.15.357

[5]

Shu-Guang Shao, Shu Wang, Wen-Qing Xu, Yu-Li Ge. On the local C1, α solution of ideal magneto-hydrodynamical equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2103-2113. doi: 10.3934/dcds.2017090

[6]

Zhengguang Guo, Sadek Gala. Regularity criterion of the Newton-Boussinesq equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 443-451. doi: 10.3934/cpaa.2012.11.443

[7]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[8]

Wendong Wang, Liqun Zhang. The $C^{\alpha}$ regularity of weak solutions of ultraparabolic equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1261-1275. doi: 10.3934/dcds.2011.29.1261

[9]

Boling Guo, Guangwu Wang. Existence of the solution for the viscous bipolar quantum hydrodynamic model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3183-3210. doi: 10.3934/dcds.2017136

[10]

Jiří Neustupa. A note on local interior regularity of a suitable weak solution to the Navier--Stokes problem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1391-1400. doi: 10.3934/dcdss.2013.6.1391

[11]

Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053

[12]

Jiahong Wu. Regularity results for weak solutions of the 3D MHD equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 543-556. doi: 10.3934/dcds.2004.10.543

[13]

Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631

[14]

Tomoyuki Suzuki. Regularity criteria in weak spaces in terms of the pressure to the MHD equations. Conference Publications, 2011, 2011 (Special) : 1335-1343. doi: 10.3934/proc.2011.2011.1335

[15]

Giuseppe Riey. Regularity and weak comparison principles for double phase quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4863-4873. doi: 10.3934/dcds.2019198

[16]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[17]

Tong Li, Anthony Suen. Existence of intermediate weak solution to the equations of multi-dimensional chemotaxis systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 861-875. doi: 10.3934/dcds.2016.36.861

[18]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[19]

Zujin Zhang. A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component. Communications on Pure & Applied Analysis, 2013, 12 (1) : 117-124. doi: 10.3934/cpaa.2013.12.117

[20]

Jishan Fan, Fucai Li, Gen Nakamura. A regularity criterion for the 3D full compressible magnetohydrodynamic equations with zero heat conductivity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1757-1766. doi: 10.3934/dcdsb.2018079

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]