May  2012, 11(3): 973-980. doi: 10.3934/cpaa.2012.11.973

A new regularity criterion for the 3D MHD equations in $R^3$

1. 

Department of Mathematics, University of Mostaganem, Box 227, Mostaganem 27000

Received  October 2010 Revised  April 2011 Published  December 2011

In this paper, we establish some improved regularity conditions for the 3D incompressible magnetohydrodynamic equations via only two components of the velocity and magnetic fields. This is an improvement of the result given by Ji and Lee [8].
Citation: Sadek Gala. A new regularity criterion for the 3D MHD equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (3) : 973-980. doi: 10.3934/cpaa.2012.11.973
References:
[1]

H.-O. Bae and H.-J. Choe, A regularity criterion for the Navier-Stokes equations,, Comm. Partial Differential Equations, 32 (2007), 1173.  doi: 10.1080/03605300701257500.  Google Scholar

[2]

R. Caflisch, I. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD,, Comm. Math. Phys., 184 (1997), 443.  doi: 10.1007/s002200050067.  Google Scholar

[3]

C. Cao and E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations,, Indiana Univ. Math. J., 57 (2008), 2643.  doi: 10.1512/iumj.2008.57.3719.  Google Scholar

[4]

Q. Chen and C. Miao, Existence theorem and blow-up criterion of the strong solutions to the two-fluid MHD equations in $R^3$,, J. Differential Equations, 239 (2007), 251.  doi: 10.1016/j.jde.2007.03.029.  Google Scholar

[5]

Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations,, Comm. Math. Phys., 284 (2008), 919.  doi: 10.1007/s00220-008-0545-y.  Google Scholar

[6]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[7]

C. He and Z. Xin, On the regularity of solutions to the magnetohydrodynamic equations,, J. Differential Equations, 213 (2005), 235.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[8]

E. Ji and J. Lee, Some regularity criteria for the 3D incompressible magnetohydrodynamics,, J. Math. Anal. Appl., 369 (2010), 317.  doi: 10.1016/j.jmaa.2010.03.015.  Google Scholar

[9]

S. Gala and P. G. Lemarié-Rieusset, Multipliers between Sobolev spaces and fractional differentiation,, J. Math. Anal. Appl., 322 (2006), 1030.  doi: 10.1016/j.jmaa.2005.07.043.  Google Scholar

[10]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453.  doi: 10.1088/0951-7715/19/2/012.  Google Scholar

[11]

J. Neustupa, A. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, Topics in Mathematical Fluid Mechanics,, Quaderni di Matematica Vol. 10 Seconda Universita di Napoli, (2002), 163.   Google Scholar

[12]

P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity,, Appl. Math., 49 (2004), 483.  doi: 10.1023/B:APOM.0000048124.64244.7e.  Google Scholar

[13]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[14]

J. Wu, Viscous and inviscid magnetohydrodynamics equations,, J. Anal. Math., 73 (1997), 251.  doi: 10.1007/BF02788146.  Google Scholar

[15]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, Discrete Contin. Dyn. Syst., 12 (2005), 881.  doi: 10.3934/dcds.2005.12.881.  Google Scholar

[16]

Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space,, Z. Angew. Math. Phys., 61 (2010), 193.  doi: 10.1007/s00033-009-0023-1.  Google Scholar

[17]

Y. Zhou and S. Gala, On the existence of global solutions for the magneto-hydrodynamic equations,, Preprint, (2010).   Google Scholar

show all references

References:
[1]

H.-O. Bae and H.-J. Choe, A regularity criterion for the Navier-Stokes equations,, Comm. Partial Differential Equations, 32 (2007), 1173.  doi: 10.1080/03605300701257500.  Google Scholar

[2]

R. Caflisch, I. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD,, Comm. Math. Phys., 184 (1997), 443.  doi: 10.1007/s002200050067.  Google Scholar

[3]

C. Cao and E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations,, Indiana Univ. Math. J., 57 (2008), 2643.  doi: 10.1512/iumj.2008.57.3719.  Google Scholar

[4]

Q. Chen and C. Miao, Existence theorem and blow-up criterion of the strong solutions to the two-fluid MHD equations in $R^3$,, J. Differential Equations, 239 (2007), 251.  doi: 10.1016/j.jde.2007.03.029.  Google Scholar

[5]

Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations,, Comm. Math. Phys., 284 (2008), 919.  doi: 10.1007/s00220-008-0545-y.  Google Scholar

[6]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[7]

C. He and Z. Xin, On the regularity of solutions to the magnetohydrodynamic equations,, J. Differential Equations, 213 (2005), 235.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[8]

E. Ji and J. Lee, Some regularity criteria for the 3D incompressible magnetohydrodynamics,, J. Math. Anal. Appl., 369 (2010), 317.  doi: 10.1016/j.jmaa.2010.03.015.  Google Scholar

[9]

S. Gala and P. G. Lemarié-Rieusset, Multipliers between Sobolev spaces and fractional differentiation,, J. Math. Anal. Appl., 322 (2006), 1030.  doi: 10.1016/j.jmaa.2005.07.043.  Google Scholar

[10]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453.  doi: 10.1088/0951-7715/19/2/012.  Google Scholar

[11]

J. Neustupa, A. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, Topics in Mathematical Fluid Mechanics,, Quaderni di Matematica Vol. 10 Seconda Universita di Napoli, (2002), 163.   Google Scholar

[12]

P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity,, Appl. Math., 49 (2004), 483.  doi: 10.1023/B:APOM.0000048124.64244.7e.  Google Scholar

[13]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[14]

J. Wu, Viscous and inviscid magnetohydrodynamics equations,, J. Anal. Math., 73 (1997), 251.  doi: 10.1007/BF02788146.  Google Scholar

[15]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, Discrete Contin. Dyn. Syst., 12 (2005), 881.  doi: 10.3934/dcds.2005.12.881.  Google Scholar

[16]

Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space,, Z. Angew. Math. Phys., 61 (2010), 193.  doi: 10.1007/s00033-009-0023-1.  Google Scholar

[17]

Y. Zhou and S. Gala, On the existence of global solutions for the magneto-hydrodynamic equations,, Preprint, (2010).   Google Scholar

[1]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[4]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[5]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[6]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[7]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[8]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[9]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[10]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[11]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[14]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[15]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[16]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[17]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[18]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[19]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[20]

Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020356

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]