May  2012, 11(3): 981-1002. doi: 10.3934/cpaa.2012.11.981

A hyperbolic model of spatial evolutionary game theory

1. 

Dipartimento di Scienze Applicate - Università di Napoli "Parthenope", Via A. De Gasperi, 5 - 80133 Napoli, Italy

2. 

Dipartimento di Scienze di Base e Applicate per l’Ingegneria (SBAI), Università degli Studi “Sapienza” di Roma

3. 

Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche, c/o Department of Mathematics, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 1; I-00133 Roma

Received  October 2010 Revised  February 2011 Published  December 2011

We present a one space dimensional model with finite speed of propagation for population dynamics, based both on the hyperbolic Cattaneo dynamics and the evolutionary game theory. We prove analytical properties of the model and global estimates for solutions, by using a hyperbolic nonlinear Trotter product formula.
Citation: Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981
References:
[1]

A. L. Amadori, A. Boccabella and R. Natalini, A one dimensional hyperbolic model for evolutionary game theory: numerical approximations and simulations,, Commun. Appl. Ind. Math., 1 (2010), 1.  doi: DOI: 10.1685/2010CAIM494.  Google Scholar

[2]

D. Ambrosi and L. Preziosi, On the closure of mass balance models for tumour growth,, Math. Models Methods Appl. Sci., 12 (2002), 737.   Google Scholar

[3]

A. Bressan, Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem,, Oxford Lecture Series in Mathematics and its Applications, 20 (2000).   Google Scholar

[4]

M. C. Cattaneo, Sur une forme de l'equation de la chaleur liminant le paradoxe d'une propagation instantane,, Comptes Rendus L'Acad. Sci. Ser. I-Math., 247 (1958), 431.   Google Scholar

[5]

K. N. Chueh and C. C. Conley and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations,, Indiana Univ. Math. J., 26 (1977), 373.   Google Scholar

[6]

R. Cressman and G. T. Vickers, Spatial and density effects in evolutionary game theory,, J. Theor. Biol., 184 (1997), 359.   Google Scholar

[7]

R. Ferriere and R. E. Michod, The evolution of cooperation in spatially heterogeneous populations,, The American Naturalist, 147 (1996), 692.   Google Scholar

[8]

F. Fu, M. A. Nowak and Ch. Hauert, Invasion and expansion of cooperators in lattice populations: Prisoner's dilemma vs. Snowdrift games,, J. Theor. Biol., 266 (2010), 358.  doi: DOI: 10.1016/j.jtbi.2010.06.042.  Google Scholar

[9]

T. Hillen, Hyperbolic models for chemosensitive movement,, Math. Models Methods Appl. Sci., 12 (2002), 1007.   Google Scholar

[10]

T. Hillen, On the $L^2$-moment closure of transport equations: the Cattaneo approximation,, Discrete Cont. Dyn. Syst., B4 (2004), 961.   Google Scholar

[11]

J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics,", Cambridge University Press, (1998).  doi: DOI: 10.1090/S0273-0979-03-00988-1.  Google Scholar

[12]

J. Hofbauer and K. Sigmund, Evolutionary game dynamics,, B. Am. Math. Soc., 40 (2003), 479.   Google Scholar

[13]

V. C. L. Hutson and G. T. Vickers, Travelling waves and dominance of ESS's,, J. Math. Biol., 30 (1992), 457.   Google Scholar

[14]

J. Maynard Smith, "Evolution and the Theory of Games,", Cambridge University Press, (1982).   Google Scholar

[15]

J. Maynard Smith and G. R. Price, The logic of animal conflicts,, Nature, 246 (1973), 15.   Google Scholar

[16]

J. Fort and V. Mendez, Wavefronts in time-delayed reaction-diffusion systems. Theory and comparison to experiment,, Rep. Prog. Phys., 65 (2002), 895.   Google Scholar

[17]

V. Mendez, S. Fedotov and W. Horsthemke, "Reaction-transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities Series: Springer Series in Synergetics,", 2010., ().   Google Scholar

[18]

J. D. Murray, "Mathematical Biology. II. Spatial Models and Biomedical Applications,", Third edition. Interdisciplinary Applied Mathematics, (2003).   Google Scholar

[19]

J. Nash, Non-cooperative games,, Ann. of Math., 54 (1951), 286.   Google Scholar

[20]

M. A. Nowak, "Evolutionary Dynamics,", Harvard University Press, (2001).   Google Scholar

[21]

M. E. Taylor, "Partial Differential Equations III. Nonlinear Equations,", Second edition. Applied Mathematical Sciences, (2011).   Google Scholar

[22]

P. D. Taylor and L. B. Jonker, Evolutionary stable strategies and game dynamics,, Math. Biosci., 40 (2001), 145.   Google Scholar

[23]

G. T. Vickers, Spatial patterns and ESS's,, J. Theor. Biol., 140 (1989), 129.   Google Scholar

show all references

References:
[1]

A. L. Amadori, A. Boccabella and R. Natalini, A one dimensional hyperbolic model for evolutionary game theory: numerical approximations and simulations,, Commun. Appl. Ind. Math., 1 (2010), 1.  doi: DOI: 10.1685/2010CAIM494.  Google Scholar

[2]

D. Ambrosi and L. Preziosi, On the closure of mass balance models for tumour growth,, Math. Models Methods Appl. Sci., 12 (2002), 737.   Google Scholar

[3]

A. Bressan, Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem,, Oxford Lecture Series in Mathematics and its Applications, 20 (2000).   Google Scholar

[4]

M. C. Cattaneo, Sur une forme de l'equation de la chaleur liminant le paradoxe d'une propagation instantane,, Comptes Rendus L'Acad. Sci. Ser. I-Math., 247 (1958), 431.   Google Scholar

[5]

K. N. Chueh and C. C. Conley and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations,, Indiana Univ. Math. J., 26 (1977), 373.   Google Scholar

[6]

R. Cressman and G. T. Vickers, Spatial and density effects in evolutionary game theory,, J. Theor. Biol., 184 (1997), 359.   Google Scholar

[7]

R. Ferriere and R. E. Michod, The evolution of cooperation in spatially heterogeneous populations,, The American Naturalist, 147 (1996), 692.   Google Scholar

[8]

F. Fu, M. A. Nowak and Ch. Hauert, Invasion and expansion of cooperators in lattice populations: Prisoner's dilemma vs. Snowdrift games,, J. Theor. Biol., 266 (2010), 358.  doi: DOI: 10.1016/j.jtbi.2010.06.042.  Google Scholar

[9]

T. Hillen, Hyperbolic models for chemosensitive movement,, Math. Models Methods Appl. Sci., 12 (2002), 1007.   Google Scholar

[10]

T. Hillen, On the $L^2$-moment closure of transport equations: the Cattaneo approximation,, Discrete Cont. Dyn. Syst., B4 (2004), 961.   Google Scholar

[11]

J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics,", Cambridge University Press, (1998).  doi: DOI: 10.1090/S0273-0979-03-00988-1.  Google Scholar

[12]

J. Hofbauer and K. Sigmund, Evolutionary game dynamics,, B. Am. Math. Soc., 40 (2003), 479.   Google Scholar

[13]

V. C. L. Hutson and G. T. Vickers, Travelling waves and dominance of ESS's,, J. Math. Biol., 30 (1992), 457.   Google Scholar

[14]

J. Maynard Smith, "Evolution and the Theory of Games,", Cambridge University Press, (1982).   Google Scholar

[15]

J. Maynard Smith and G. R. Price, The logic of animal conflicts,, Nature, 246 (1973), 15.   Google Scholar

[16]

J. Fort and V. Mendez, Wavefronts in time-delayed reaction-diffusion systems. Theory and comparison to experiment,, Rep. Prog. Phys., 65 (2002), 895.   Google Scholar

[17]

V. Mendez, S. Fedotov and W. Horsthemke, "Reaction-transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities Series: Springer Series in Synergetics,", 2010., ().   Google Scholar

[18]

J. D. Murray, "Mathematical Biology. II. Spatial Models and Biomedical Applications,", Third edition. Interdisciplinary Applied Mathematics, (2003).   Google Scholar

[19]

J. Nash, Non-cooperative games,, Ann. of Math., 54 (1951), 286.   Google Scholar

[20]

M. A. Nowak, "Evolutionary Dynamics,", Harvard University Press, (2001).   Google Scholar

[21]

M. E. Taylor, "Partial Differential Equations III. Nonlinear Equations,", Second edition. Applied Mathematical Sciences, (2011).   Google Scholar

[22]

P. D. Taylor and L. B. Jonker, Evolutionary stable strategies and game dynamics,, Math. Biosci., 40 (2001), 145.   Google Scholar

[23]

G. T. Vickers, Spatial patterns and ESS's,, J. Theor. Biol., 140 (1989), 129.   Google Scholar

[1]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[2]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[5]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[8]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[9]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[10]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[11]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[12]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[13]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[14]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[15]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[16]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[17]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[18]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[19]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[20]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (95)
  • HTML views (0)
  • Cited by (1)

[Back to Top]