-
Previous Article
Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations
- CPAA Home
- This Issue
-
Next Article
A new regularity criterion for the 3D MHD equations in $R^3$
A hyperbolic model of spatial evolutionary game theory
1. | Dipartimento di Scienze Applicate - Università di Napoli "Parthenope", Via A. De Gasperi, 5 - 80133 Napoli, Italy |
2. | Dipartimento di Scienze di Base e Applicate per l’Ingegneria (SBAI), Università degli Studi “Sapienza” di Roma |
3. | Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche, c/o Department of Mathematics, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 1; I-00133 Roma |
References:
[1] |
A. L. Amadori, A. Boccabella and R. Natalini, A one dimensional hyperbolic model for evolutionary game theory: numerical approximations and simulations, Commun. Appl. Ind. Math., 1 (2010), 1-21.
doi: DOI: 10.1685/2010CAIM494. |
[2] |
D. Ambrosi and L. Preziosi, On the closure of mass balance models for tumour growth, Math. Models Methods Appl. Sci., 12 (2002), 737-754. |
[3] |
A. Bressan, Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem, Oxford Lecture Series in Mathematics and its Applications, 20 (2000). |
[4] |
M. C. Cattaneo, Sur une forme de l'equation de la chaleur liminant le paradoxe d'une propagation instantane, Comptes Rendus L'Acad. Sci. Ser. I-Math., 247 (1958), 431-433. |
[5] |
K. N. Chueh and C. C. Conley and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J., 26 (1977), 373-392. |
[6] |
R. Cressman and G. T. Vickers, Spatial and density effects in evolutionary game theory, J. Theor. Biol., 184 (1997), 359-369. |
[7] |
R. Ferriere and R. E. Michod, The evolution of cooperation in spatially heterogeneous populations, The American Naturalist, 147 (1996), 692-717 |
[8] |
F. Fu, M. A. Nowak and Ch. Hauert, Invasion and expansion of cooperators in lattice populations: Prisoner's dilemma vs. Snowdrift games, J. Theor. Biol., 266 (2010), 358-366
doi: DOI: 10.1016/j.jtbi.2010.06.042. |
[9] |
T. Hillen, Hyperbolic models for chemosensitive movement, Math. Models Methods Appl. Sci., 12 (2002), 1007-1034. |
[10] |
T. Hillen, On the $L^2$-moment closure of transport equations: the Cattaneo approximation, Discrete Cont. Dyn. Syst., B4 (2004), 961-982. |
[11] |
J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics," Cambridge University Press, 1998.
doi: DOI: 10.1090/S0273-0979-03-00988-1. |
[12] |
J. Hofbauer and K. Sigmund, Evolutionary game dynamics, B. Am. Math. Soc., 40 (2003), 479-519. |
[13] |
V. C. L. Hutson and G. T. Vickers, Travelling waves and dominance of ESS's, J. Math. Biol., 30 (1992), 457-471. |
[14] |
J. Maynard Smith, "Evolution and the Theory of Games," Cambridge University Press, 1982. |
[15] |
J. Maynard Smith and G. R. Price, The logic of animal conflicts, Nature, 246 (1973), 15-18. |
[16] |
J. Fort and V. Mendez, Wavefronts in time-delayed reaction-diffusion systems. Theory and comparison to experiment, Rep. Prog. Phys., 65 (2002), 895-954. |
[17] |
V. Mendez, S. Fedotov and W. Horsthemke, "Reaction-transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities Series: Springer Series in Synergetics,", 2010., ().
|
[18] |
J. D. Murray, "Mathematical Biology. II. Spatial Models and Biomedical Applications," Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003. xxvi+811 pp. |
[19] |
J. Nash, Non-cooperative games, Ann. of Math., 54 (1951), 286-295. |
[20] |
M. A. Nowak, "Evolutionary Dynamics," Harvard University Press, 2001. |
[21] |
M. E. Taylor, "Partial Differential Equations III. Nonlinear Equations," Second edition. Applied Mathematical Sciences, 117. Springer, New York, 2011. xxii+715 pp. |
[22] |
P. D. Taylor and L. B. Jonker, Evolutionary stable strategies and game dynamics, Math. Biosci., 40 (2001), 145-156. |
[23] |
G. T. Vickers, Spatial patterns and ESS's, J. Theor. Biol., 140 (1989), 129-135. |
show all references
References:
[1] |
A. L. Amadori, A. Boccabella and R. Natalini, A one dimensional hyperbolic model for evolutionary game theory: numerical approximations and simulations, Commun. Appl. Ind. Math., 1 (2010), 1-21.
doi: DOI: 10.1685/2010CAIM494. |
[2] |
D. Ambrosi and L. Preziosi, On the closure of mass balance models for tumour growth, Math. Models Methods Appl. Sci., 12 (2002), 737-754. |
[3] |
A. Bressan, Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem, Oxford Lecture Series in Mathematics and its Applications, 20 (2000). |
[4] |
M. C. Cattaneo, Sur une forme de l'equation de la chaleur liminant le paradoxe d'une propagation instantane, Comptes Rendus L'Acad. Sci. Ser. I-Math., 247 (1958), 431-433. |
[5] |
K. N. Chueh and C. C. Conley and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J., 26 (1977), 373-392. |
[6] |
R. Cressman and G. T. Vickers, Spatial and density effects in evolutionary game theory, J. Theor. Biol., 184 (1997), 359-369. |
[7] |
R. Ferriere and R. E. Michod, The evolution of cooperation in spatially heterogeneous populations, The American Naturalist, 147 (1996), 692-717 |
[8] |
F. Fu, M. A. Nowak and Ch. Hauert, Invasion and expansion of cooperators in lattice populations: Prisoner's dilemma vs. Snowdrift games, J. Theor. Biol., 266 (2010), 358-366
doi: DOI: 10.1016/j.jtbi.2010.06.042. |
[9] |
T. Hillen, Hyperbolic models for chemosensitive movement, Math. Models Methods Appl. Sci., 12 (2002), 1007-1034. |
[10] |
T. Hillen, On the $L^2$-moment closure of transport equations: the Cattaneo approximation, Discrete Cont. Dyn. Syst., B4 (2004), 961-982. |
[11] |
J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics," Cambridge University Press, 1998.
doi: DOI: 10.1090/S0273-0979-03-00988-1. |
[12] |
J. Hofbauer and K. Sigmund, Evolutionary game dynamics, B. Am. Math. Soc., 40 (2003), 479-519. |
[13] |
V. C. L. Hutson and G. T. Vickers, Travelling waves and dominance of ESS's, J. Math. Biol., 30 (1992), 457-471. |
[14] |
J. Maynard Smith, "Evolution and the Theory of Games," Cambridge University Press, 1982. |
[15] |
J. Maynard Smith and G. R. Price, The logic of animal conflicts, Nature, 246 (1973), 15-18. |
[16] |
J. Fort and V. Mendez, Wavefronts in time-delayed reaction-diffusion systems. Theory and comparison to experiment, Rep. Prog. Phys., 65 (2002), 895-954. |
[17] |
V. Mendez, S. Fedotov and W. Horsthemke, "Reaction-transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities Series: Springer Series in Synergetics,", 2010., ().
|
[18] |
J. D. Murray, "Mathematical Biology. II. Spatial Models and Biomedical Applications," Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003. xxvi+811 pp. |
[19] |
J. Nash, Non-cooperative games, Ann. of Math., 54 (1951), 286-295. |
[20] |
M. A. Nowak, "Evolutionary Dynamics," Harvard University Press, 2001. |
[21] |
M. E. Taylor, "Partial Differential Equations III. Nonlinear Equations," Second edition. Applied Mathematical Sciences, 117. Springer, New York, 2011. xxii+715 pp. |
[22] |
P. D. Taylor and L. B. Jonker, Evolutionary stable strategies and game dynamics, Math. Biosci., 40 (2001), 145-156. |
[23] |
G. T. Vickers, Spatial patterns and ESS's, J. Theor. Biol., 140 (1989), 129-135. |
[1] |
Kashi Behrstock, Michel Benaïm, Morris W. Hirsch. Smale strategies for network prisoner's dilemma games. Journal of Dynamics and Games, 2015, 2 (2) : 141-155. doi: 10.3934/jdg.2015.2.141 |
[2] |
Sharon M. Cameron, Ariel Cintrón-Arias. Prisoner's Dilemma on real social networks: Revisited. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1381-1398. doi: 10.3934/mbe.2013.10.1381 |
[3] |
Ethan Akin. Good strategies for the Iterated Prisoner's Dilemma: Smale vs. Markov. Journal of Dynamics and Games, 2017, 4 (3) : 217-253. doi: 10.3934/jdg.2017014 |
[4] |
Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic and Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187 |
[5] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic and Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[6] |
King-Yeung Lam. Dirac-concentrations in an integro-pde model from evolutionary game theory. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 737-754. doi: 10.3934/dcdsb.2018205 |
[7] |
Tohru Nakamura, Shuichi Kawashima. Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law. Kinetic and Related Models, 2018, 11 (4) : 795-819. doi: 10.3934/krm.2018032 |
[8] |
Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2441-2474. doi: 10.3934/cpaa.2021049 |
[9] |
John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291 |
[10] |
Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302 |
[11] |
Pedro Roberto de Lima, Hugo D. Fernández Sare. General condition for exponential stability of thermoelastic Bresse systems with Cattaneo's law. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3575-3596. doi: 10.3934/cpaa.2020156 |
[12] |
Scott G. McCalla. Paladins as predators: Invasive waves in a spatial evolutionary adversarial game. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1437-1457. doi: 10.3934/dcdsb.2014.19.1437 |
[13] |
William H. Sandholm. Local stability of strict equilibria under evolutionary game dynamics. Journal of Dynamics and Games, 2014, 1 (3) : 485-495. doi: 10.3934/jdg.2014.1.485 |
[14] |
Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5305-5319. doi: 10.3934/dcdsb.2020344 |
[15] |
T. Hillen. On the $L^2$-moment closure of transport equations: The Cattaneo approximation. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 961-982. doi: 10.3934/dcdsb.2004.4.961 |
[16] |
Maoan Han, Xiaoyan Hou, Lijuan Sheng, Chaoyang Wang. Theory of rotated equations and applications to a population model. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2171-2185. doi: 10.3934/dcds.2018089 |
[17] |
Shui-Nee Chow, Kening Lu, Yun-Qiu Shen. Normal forms for quasiperiodic evolutionary equations. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 65-94. doi: 10.3934/dcds.1996.2.65 |
[18] |
Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics and Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013 |
[19] |
Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257 |
[20] |
Roberto Triggiani. Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space. Evolution Equations and Control Theory, 2016, 5 (4) : 489-514. doi: 10.3934/eect.2016016 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]