May  2012, 11(3): 981-1002. doi: 10.3934/cpaa.2012.11.981

A hyperbolic model of spatial evolutionary game theory

1. 

Dipartimento di Scienze Applicate - Università di Napoli "Parthenope", Via A. De Gasperi, 5 - 80133 Napoli, Italy

2. 

Dipartimento di Scienze di Base e Applicate per l’Ingegneria (SBAI), Università degli Studi “Sapienza” di Roma

3. 

Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche, c/o Department of Mathematics, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 1; I-00133 Roma

Received  October 2010 Revised  February 2011 Published  December 2011

We present a one space dimensional model with finite speed of propagation for population dynamics, based both on the hyperbolic Cattaneo dynamics and the evolutionary game theory. We prove analytical properties of the model and global estimates for solutions, by using a hyperbolic nonlinear Trotter product formula.
Citation: Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981
References:
[1]

A. L. Amadori, A. Boccabella and R. Natalini, A one dimensional hyperbolic model for evolutionary game theory: numerical approximations and simulations, Commun. Appl. Ind. Math., 1 (2010), 1-21. doi: DOI: 10.1685/2010CAIM494.  Google Scholar

[2]

D. Ambrosi and L. Preziosi, On the closure of mass balance models for tumour growth, Math. Models Methods Appl. Sci., 12 (2002), 737-754.  Google Scholar

[3]

A. Bressan, Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem, Oxford Lecture Series in Mathematics and its Applications, 20 (2000).  Google Scholar

[4]

M. C. Cattaneo, Sur une forme de l'equation de la chaleur liminant le paradoxe d'une propagation instantane, Comptes Rendus L'Acad. Sci. Ser. I-Math., 247 (1958), 431-433.  Google Scholar

[5]

K. N. Chueh and C. C. Conley and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J., 26 (1977), 373-392.  Google Scholar

[6]

R. Cressman and G. T. Vickers, Spatial and density effects in evolutionary game theory, J. Theor. Biol., 184 (1997), 359-369. Google Scholar

[7]

R. Ferriere and R. E. Michod, The evolution of cooperation in spatially heterogeneous populations, The American Naturalist, 147 (1996), 692-717 Google Scholar

[8]

F. Fu, M. A. Nowak and Ch. Hauert, Invasion and expansion of cooperators in lattice populations: Prisoner's dilemma vs. Snowdrift games, J. Theor. Biol., 266 (2010), 358-366 doi: DOI: 10.1016/j.jtbi.2010.06.042.  Google Scholar

[9]

T. Hillen, Hyperbolic models for chemosensitive movement, Math. Models Methods Appl. Sci., 12 (2002), 1007-1034.  Google Scholar

[10]

T. Hillen, On the $L^2$-moment closure of transport equations: the Cattaneo approximation, Discrete Cont. Dyn. Syst., B4 (2004), 961-982.  Google Scholar

[11]

J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics," Cambridge University Press, 1998. doi: DOI: 10.1090/S0273-0979-03-00988-1.  Google Scholar

[12]

J. Hofbauer and K. Sigmund, Evolutionary game dynamics, B. Am. Math. Soc., 40 (2003), 479-519.  Google Scholar

[13]

V. C. L. Hutson and G. T. Vickers, Travelling waves and dominance of ESS's, J. Math. Biol., 30 (1992), 457-471.  Google Scholar

[14]

J. Maynard Smith, "Evolution and the Theory of Games," Cambridge University Press, 1982. Google Scholar

[15]

J. Maynard Smith and G. R. Price, The logic of animal conflicts, Nature, 246 (1973), 15-18. Google Scholar

[16]

J. Fort and V. Mendez, Wavefronts in time-delayed reaction-diffusion systems. Theory and comparison to experiment, Rep. Prog. Phys., 65 (2002), 895-954. Google Scholar

[17]

V. Mendez, S. Fedotov and W. Horsthemke, "Reaction-transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities Series: Springer Series in Synergetics,", 2010., ().   Google Scholar

[18]

J. D. Murray, "Mathematical Biology. II. Spatial Models and Biomedical Applications," Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003. xxvi+811 pp.  Google Scholar

[19]

J. Nash, Non-cooperative games, Ann. of Math., 54 (1951), 286-295.  Google Scholar

[20]

M. A. Nowak, "Evolutionary Dynamics," Harvard University Press, 2001. Google Scholar

[21]

M. E. Taylor, "Partial Differential Equations III. Nonlinear Equations," Second edition. Applied Mathematical Sciences, 117. Springer, New York, 2011. xxii+715 pp.  Google Scholar

[22]

P. D. Taylor and L. B. Jonker, Evolutionary stable strategies and game dynamics, Math. Biosci., 40 (2001), 145-156.  Google Scholar

[23]

G. T. Vickers, Spatial patterns and ESS's, J. Theor. Biol., 140 (1989), 129-135.  Google Scholar

show all references

References:
[1]

A. L. Amadori, A. Boccabella and R. Natalini, A one dimensional hyperbolic model for evolutionary game theory: numerical approximations and simulations, Commun. Appl. Ind. Math., 1 (2010), 1-21. doi: DOI: 10.1685/2010CAIM494.  Google Scholar

[2]

D. Ambrosi and L. Preziosi, On the closure of mass balance models for tumour growth, Math. Models Methods Appl. Sci., 12 (2002), 737-754.  Google Scholar

[3]

A. Bressan, Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem, Oxford Lecture Series in Mathematics and its Applications, 20 (2000).  Google Scholar

[4]

M. C. Cattaneo, Sur une forme de l'equation de la chaleur liminant le paradoxe d'une propagation instantane, Comptes Rendus L'Acad. Sci. Ser. I-Math., 247 (1958), 431-433.  Google Scholar

[5]

K. N. Chueh and C. C. Conley and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J., 26 (1977), 373-392.  Google Scholar

[6]

R. Cressman and G. T. Vickers, Spatial and density effects in evolutionary game theory, J. Theor. Biol., 184 (1997), 359-369. Google Scholar

[7]

R. Ferriere and R. E. Michod, The evolution of cooperation in spatially heterogeneous populations, The American Naturalist, 147 (1996), 692-717 Google Scholar

[8]

F. Fu, M. A. Nowak and Ch. Hauert, Invasion and expansion of cooperators in lattice populations: Prisoner's dilemma vs. Snowdrift games, J. Theor. Biol., 266 (2010), 358-366 doi: DOI: 10.1016/j.jtbi.2010.06.042.  Google Scholar

[9]

T. Hillen, Hyperbolic models for chemosensitive movement, Math. Models Methods Appl. Sci., 12 (2002), 1007-1034.  Google Scholar

[10]

T. Hillen, On the $L^2$-moment closure of transport equations: the Cattaneo approximation, Discrete Cont. Dyn. Syst., B4 (2004), 961-982.  Google Scholar

[11]

J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics," Cambridge University Press, 1998. doi: DOI: 10.1090/S0273-0979-03-00988-1.  Google Scholar

[12]

J. Hofbauer and K. Sigmund, Evolutionary game dynamics, B. Am. Math. Soc., 40 (2003), 479-519.  Google Scholar

[13]

V. C. L. Hutson and G. T. Vickers, Travelling waves and dominance of ESS's, J. Math. Biol., 30 (1992), 457-471.  Google Scholar

[14]

J. Maynard Smith, "Evolution and the Theory of Games," Cambridge University Press, 1982. Google Scholar

[15]

J. Maynard Smith and G. R. Price, The logic of animal conflicts, Nature, 246 (1973), 15-18. Google Scholar

[16]

J. Fort and V. Mendez, Wavefronts in time-delayed reaction-diffusion systems. Theory and comparison to experiment, Rep. Prog. Phys., 65 (2002), 895-954. Google Scholar

[17]

V. Mendez, S. Fedotov and W. Horsthemke, "Reaction-transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities Series: Springer Series in Synergetics,", 2010., ().   Google Scholar

[18]

J. D. Murray, "Mathematical Biology. II. Spatial Models and Biomedical Applications," Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003. xxvi+811 pp.  Google Scholar

[19]

J. Nash, Non-cooperative games, Ann. of Math., 54 (1951), 286-295.  Google Scholar

[20]

M. A. Nowak, "Evolutionary Dynamics," Harvard University Press, 2001. Google Scholar

[21]

M. E. Taylor, "Partial Differential Equations III. Nonlinear Equations," Second edition. Applied Mathematical Sciences, 117. Springer, New York, 2011. xxii+715 pp.  Google Scholar

[22]

P. D. Taylor and L. B. Jonker, Evolutionary stable strategies and game dynamics, Math. Biosci., 40 (2001), 145-156.  Google Scholar

[23]

G. T. Vickers, Spatial patterns and ESS's, J. Theor. Biol., 140 (1989), 129-135.  Google Scholar

[1]

Kashi Behrstock, Michel Benaïm, Morris W. Hirsch. Smale strategies for network prisoner's dilemma games. Journal of Dynamics & Games, 2015, 2 (2) : 141-155. doi: 10.3934/jdg.2015.2.141

[2]

Sharon M. Cameron, Ariel Cintrón-Arias. Prisoner's Dilemma on real social networks: Revisited. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1381-1398. doi: 10.3934/mbe.2013.10.1381

[3]

Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic & Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187

[4]

Ethan Akin. Good strategies for the Iterated Prisoner's Dilemma: Smale vs. Markov. Journal of Dynamics & Games, 2017, 4 (3) : 217-253. doi: 10.3934/jdg.2017014

[5]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[6]

King-Yeung Lam. Dirac-concentrations in an integro-pde model from evolutionary game theory. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 737-754. doi: 10.3934/dcdsb.2018205

[7]

Tohru Nakamura, Shuichi Kawashima. Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law. Kinetic & Related Models, 2018, 11 (4) : 795-819. doi: 10.3934/krm.2018032

[8]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, 2021, 20 (7&8) : 2441-2474. doi: 10.3934/cpaa.2021049

[9]

John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291

[10]

Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302

[11]

Pedro Roberto de Lima, Hugo D. Fernández Sare. General condition for exponential stability of thermoelastic Bresse systems with Cattaneo's law. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3575-3596. doi: 10.3934/cpaa.2020156

[12]

Scott G. McCalla. Paladins as predators: Invasive waves in a spatial evolutionary adversarial game. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1437-1457. doi: 10.3934/dcdsb.2014.19.1437

[13]

William H. Sandholm. Local stability of strict equilibria under evolutionary game dynamics. Journal of Dynamics & Games, 2014, 1 (3) : 485-495. doi: 10.3934/jdg.2014.1.485

[14]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5305-5319. doi: 10.3934/dcdsb.2020344

[15]

Maoan Han, Xiaoyan Hou, Lijuan Sheng, Chaoyang Wang. Theory of rotated equations and applications to a population model. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2171-2185. doi: 10.3934/dcds.2018089

[16]

T. Hillen. On the $L^2$-moment closure of transport equations: The Cattaneo approximation. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 961-982. doi: 10.3934/dcdsb.2004.4.961

[17]

Shui-Nee Chow, Kening Lu, Yun-Qiu Shen. Normal forms for quasiperiodic evolutionary equations. Discrete & Continuous Dynamical Systems, 1996, 2 (1) : 65-94. doi: 10.3934/dcds.1996.2.65

[18]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[19]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[20]

Roberto Triggiani. Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space. Evolution Equations & Control Theory, 2016, 5 (4) : 489-514. doi: 10.3934/eect.2016016

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (185)
  • HTML views (0)
  • Cited by (1)

[Back to Top]