January  2013, 12(1): 1-58. doi: 10.3934/cpaa.2013.12.1

Laplacians on a family of quadratic Julia sets II

1. 

Mathematics Department, Yale University, New Haven, CT 06510, United States

2. 

Mathematics Department, New York University, New York, NY 10012, United States

3. 

Mathematics Department, Malott Hall, Cornell Univeristy, Ithaca, NY 14853, United States

Received  June 2011 Revised  May 2012 Published  September 2012

This paper continues the work started in [4] to construct $P$-invariant Laplacians on the Julia sets of $P(z) = z^2 + c$ for $c$ in the interior of the Mandelbrot set, and to study the spectra of these Laplacians numerically. We are able to deal with a larger class of Julia sets and give a systematic method that reduces the construction of a $P$-invariant energy to the solution of nonlinear finite dimensional eigenvalue problem. We give the complete details for three examples, a dendrite, the airplane, and the Basilica-in-Rabbit. We also study the spectra of Laplacians on covering spaces and infinite blowups of the Julia sets. In particular, for a generic infinite blowups there is pure point spectrum, while for periodic covering spaces the spectrum is a mixture of discrete and continuous parts.
Citation: Tarik Aougab, Stella Chuyue Dong, Robert S. Strichartz. Laplacians on a family of quadratic Julia sets II. Communications on Pure & Applied Analysis, 2013, 12 (1) : 1-58. doi: 10.3934/cpaa.2013.12.1
References:
[1]

S. Constantin, R. Strichartz and M. Wheeler, Analysis of the Laplacian and spectral operators on the Vicsek set,, Comm. Pure Appl. Anal, 10 (2011), 1.   Google Scholar

[2]

Stella C. Dong, Laplacians on a family of quadratic Julia sets II,, \url{http://www.math.cornell.edu/ cdong01/}, (2010).   Google Scholar

[3]

A. Douady, Descriptions of compact sets in $\mathbbC$,, in, (1993), 429.   Google Scholar

[4]

T. Flock and R. Strichartz, Laplacians on a family of Julia sets I,, Trans. Amer. Math. Soc., ().   Google Scholar

[5]

Jun Kigami, "Analysis on Fractals,", volume 143 of Cambridge Tracts in Mathematics, (2001).   Google Scholar

[6]

Jun Kigami and Michel L. Lapidus, Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals,, Comm. Math. Phys., 158 (1993), 93.   Google Scholar

[7]

J. Milnor, Periodic orbits, externals rays and the Mandelbrot set: an expository account,, Geometrie Complexe et Systemes Dynamiques, 261 (2000), 277.   Google Scholar

[8]

Luke G. Rogers and Alexander Teplyaev, Laplacians on the basilica Julia set,, Comm. Pure Appl. Anal., 9 (2010), 211.   Google Scholar

[9]

R. Strichartz, Fractals in the large,, Can. J. Math., 50 (1998), 638.   Google Scholar

[10]

Robert S. Strichartz, "Differential Equations on Fractals, A Tutorial,'', Princeton University Press, (2006).   Google Scholar

[11]

A. Teplyaev, Spectral analysis on infinite Sierpinski gaskets,, J. Functional Anal., 159 (1998), 537.   Google Scholar

show all references

References:
[1]

S. Constantin, R. Strichartz and M. Wheeler, Analysis of the Laplacian and spectral operators on the Vicsek set,, Comm. Pure Appl. Anal, 10 (2011), 1.   Google Scholar

[2]

Stella C. Dong, Laplacians on a family of quadratic Julia sets II,, \url{http://www.math.cornell.edu/ cdong01/}, (2010).   Google Scholar

[3]

A. Douady, Descriptions of compact sets in $\mathbbC$,, in, (1993), 429.   Google Scholar

[4]

T. Flock and R. Strichartz, Laplacians on a family of Julia sets I,, Trans. Amer. Math. Soc., ().   Google Scholar

[5]

Jun Kigami, "Analysis on Fractals,", volume 143 of Cambridge Tracts in Mathematics, (2001).   Google Scholar

[6]

Jun Kigami and Michel L. Lapidus, Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals,, Comm. Math. Phys., 158 (1993), 93.   Google Scholar

[7]

J. Milnor, Periodic orbits, externals rays and the Mandelbrot set: an expository account,, Geometrie Complexe et Systemes Dynamiques, 261 (2000), 277.   Google Scholar

[8]

Luke G. Rogers and Alexander Teplyaev, Laplacians on the basilica Julia set,, Comm. Pure Appl. Anal., 9 (2010), 211.   Google Scholar

[9]

R. Strichartz, Fractals in the large,, Can. J. Math., 50 (1998), 638.   Google Scholar

[10]

Robert S. Strichartz, "Differential Equations on Fractals, A Tutorial,'', Princeton University Press, (2006).   Google Scholar

[11]

A. Teplyaev, Spectral analysis on infinite Sierpinski gaskets,, J. Functional Anal., 159 (1998), 537.   Google Scholar

[1]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (7)

[Back to Top]