\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global attractors for strongly damped wave equations with subcritical-critical nonlinearities

Abstract Related Papers Cited by
  • This paper is concerned with the nonlinear strongly damped wave equation \begin{eqnarray*} u_{t t}-\Delta u_t-\Delta u+f(u_t)+g(u)=h, \end{eqnarray*} with Dirichlet boundary conditions and a time-independent external force $h$. In the presence of nonlinearities $f$ and $g$ of subcritical and critical growth, respectively, the existence of a global attractor of optimal regularity is established.
    Mathematics Subject Classification: Primary: 35B33, 35B40, 35L05; Secondary: 35M10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," North-Holland, Amsterdam, 1992.

    [2]

    A. N. Carvalho and J. W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities, Pacific J. Math., 207 (2002), 287-310.doi: 10.2140/pjm.2002.207.287.

    [3]

    I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183 pp.

    [4]

    M. Conti and V. Pata, On the regularity of global attractors, Discrete Cont. Dyn. Sys., 25 (2009), 1209-1217.doi: 10.3934/dcds.2009.25.1209.

    [5]

    F. Dell'Oro and V. Pata, Long-term analysis of strongly damped nonlinear wave equations, Nonlinearity, 24 (2011), 3413-3435.doi: 10.1088/0951-7715/24/12/006.

    [6]

    F. Dell'Oro and V. Pata, Strongly damped wave equations with critical nonlinearities, Nonlinear Anal., 75 (2012), 5723-5735.

    [7]

    A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253-264.doi: 10.1080/01495739208946136.

    [8]

    A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189-208.doi: 10.1007/BF00044969.

    [9]

    A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. I. Classical continuum physics, Proc. Roy. Soc. London A, 448 (1995), 335-356.doi: 10.1098/rspa.1995.0020.

    [10]

    A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. II. Generalized continua, Proc. Roy. Soc. London A, 448 (1995), 357-377.doi: 10.1098/rspa.1995.0021.

    [11]

    A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. III. Mixtures of interacting continua, Proc. Roy. Soc. London A, 448 (1995), 379-388.doi: 10.1098/rspa.1995.0022.

    [12]

    J. K. Hale, "Asymptotic Behavior of Dissipative Systems," Amer. Math. Soc., Providence, 1988.

    [13]

    A. Haraux, "Systèmes Dynamiques Dissipatifs et Applications," Masson, Paris, 1991.

    [14]

    A. Kh. Khanmamedov, On the existence of a global attractor for the wave equation with nonlinear strong damping perturbed by nonmonotone term, Nonlinear Anal., 69 (2008), 3372-3385.doi: 10.1016/j.na.2007.09.028.

    [15]

    V. Pata, Uniform estimates of Gronwall type, J. Math. Anal. Appl., 373 (2011), 264-270.doi: 10.1016/j.jmaa.2010.07.006.

    [16]

    V. Pata and M. Squassina, On the strongly damped wave equation, Comm. Math. Phys., 253 (2005), 511-533.doi: 10.1007/s00220-004-1233-1.

    [17]

    V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators, Commun. Pure Appl. Anal., 6 (2007), 481-486.doi: 10.3934/cpaa.2007.6.481.

    [18]

    V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506.doi: 10.1088/0951-7715/19/7/001.

    [19]

    R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Springer, New York, 1997.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return