• Previous Article
    Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations
  • CPAA Home
  • This Issue
  • Next Article
    The explicit nonlinear wave solutions of the generalized $b$-equation
March  2013, 12(2): 1015-1027. doi: 10.3934/cpaa.2013.12.1015

Global attractors for strongly damped wave equations with subcritical-critical nonlinearities

1. 

Dipartimento di Matematica "Francesco Brioschi", Politecnico di Milano, Via Bonardi 9, Milano 20133, Italy

Received  August 2011 Revised  March 2012 Published  September 2012

This paper is concerned with the nonlinear strongly damped wave equation \begin{eqnarray*} u_{t t}-\Delta u_t-\Delta u+f(u_t)+g(u)=h, \end{eqnarray*} with Dirichlet boundary conditions and a time-independent external force $h$. In the presence of nonlinearities $f$ and $g$ of subcritical and critical growth, respectively, the existence of a global attractor of optimal regularity is established.
Citation: Filippo Dell'Oro. Global attractors for strongly damped wave equations with subcritical-critical nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1015-1027. doi: 10.3934/cpaa.2013.12.1015
References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", North-Holland, (1992).

[2]

A. N. Carvalho and J. W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities,, Pacific J. Math., 207 (2002), 287. doi: 10.2140/pjm.2002.207.287.

[3]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping,, Mem. Amer. Math. Soc., 195 (2008).

[4]

M. Conti and V. Pata, On the regularity of global attractors,, Discrete Cont. Dyn. Sys., 25 (2009), 1209. doi: 10.3934/dcds.2009.25.1209.

[5]

F. Dell'Oro and V. Pata, Long-term analysis of strongly damped nonlinear wave equations,, Nonlinearity, 24 (2011), 3413. doi: 10.1088/0951-7715/24/12/006.

[6]

F. Dell'Oro and V. Pata, Strongly damped wave equations with critical nonlinearities,, Nonlinear Anal., 75 (2012), 5723.

[7]

A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid,, J. Thermal Stresses, 15 (1992), 253. doi: 10.1080/01495739208946136.

[8]

A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation,, J. Elasticity, 31 (1993), 189. doi: 10.1007/BF00044969.

[9]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. I. Classical continuum physics,, Proc. Roy. Soc. London A, 448 (1995), 335. doi: 10.1098/rspa.1995.0020.

[10]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. II. Generalized continua,, Proc. Roy. Soc. London A, 448 (1995), 357. doi: 10.1098/rspa.1995.0021.

[11]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. III. Mixtures of interacting continua,, Proc. Roy. Soc. London A, 448 (1995), 379. doi: 10.1098/rspa.1995.0022.

[12]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Amer. Math. Soc., (1988).

[13]

A. Haraux, "Systèmes Dynamiques Dissipatifs et Applications,", Masson, (1991).

[14]

A. Kh. Khanmamedov, On the existence of a global attractor for the wave equation with nonlinear strong damping perturbed by nonmonotone term,, Nonlinear Anal., 69 (2008), 3372. doi: 10.1016/j.na.2007.09.028.

[15]

V. Pata, Uniform estimates of Gronwall type,, J. Math. Anal. Appl., 373 (2011), 264. doi: 10.1016/j.jmaa.2010.07.006.

[16]

V. Pata and M. Squassina, On the strongly damped wave equation,, Comm. Math. Phys., 253 (2005), 511. doi: 10.1007/s00220-004-1233-1.

[17]

V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators,, Commun. Pure Appl. Anal., 6 (2007), 481. doi: 10.3934/cpaa.2007.6.481.

[18]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations,, Nonlinearity, 19 (2006), 1495. doi: 10.1088/0951-7715/19/7/001.

[19]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", Springer, (1997).

show all references

References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", North-Holland, (1992).

[2]

A. N. Carvalho and J. W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities,, Pacific J. Math., 207 (2002), 287. doi: 10.2140/pjm.2002.207.287.

[3]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping,, Mem. Amer. Math. Soc., 195 (2008).

[4]

M. Conti and V. Pata, On the regularity of global attractors,, Discrete Cont. Dyn. Sys., 25 (2009), 1209. doi: 10.3934/dcds.2009.25.1209.

[5]

F. Dell'Oro and V. Pata, Long-term analysis of strongly damped nonlinear wave equations,, Nonlinearity, 24 (2011), 3413. doi: 10.1088/0951-7715/24/12/006.

[6]

F. Dell'Oro and V. Pata, Strongly damped wave equations with critical nonlinearities,, Nonlinear Anal., 75 (2012), 5723.

[7]

A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid,, J. Thermal Stresses, 15 (1992), 253. doi: 10.1080/01495739208946136.

[8]

A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation,, J. Elasticity, 31 (1993), 189. doi: 10.1007/BF00044969.

[9]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. I. Classical continuum physics,, Proc. Roy. Soc. London A, 448 (1995), 335. doi: 10.1098/rspa.1995.0020.

[10]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. II. Generalized continua,, Proc. Roy. Soc. London A, 448 (1995), 357. doi: 10.1098/rspa.1995.0021.

[11]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. III. Mixtures of interacting continua,, Proc. Roy. Soc. London A, 448 (1995), 379. doi: 10.1098/rspa.1995.0022.

[12]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Amer. Math. Soc., (1988).

[13]

A. Haraux, "Systèmes Dynamiques Dissipatifs et Applications,", Masson, (1991).

[14]

A. Kh. Khanmamedov, On the existence of a global attractor for the wave equation with nonlinear strong damping perturbed by nonmonotone term,, Nonlinear Anal., 69 (2008), 3372. doi: 10.1016/j.na.2007.09.028.

[15]

V. Pata, Uniform estimates of Gronwall type,, J. Math. Anal. Appl., 373 (2011), 264. doi: 10.1016/j.jmaa.2010.07.006.

[16]

V. Pata and M. Squassina, On the strongly damped wave equation,, Comm. Math. Phys., 253 (2005), 511. doi: 10.1007/s00220-004-1233-1.

[17]

V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators,, Commun. Pure Appl. Anal., 6 (2007), 481. doi: 10.3934/cpaa.2007.6.481.

[18]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations,, Nonlinearity, 19 (2006), 1495. doi: 10.1088/0951-7715/19/7/001.

[19]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", Springer, (1997).

[1]

Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094

[2]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[3]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[4]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[5]

Piotr Kokocki. Homotopy invariants methods in the global dynamics of strongly damped wave equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3227-3250. doi: 10.3934/dcds.2016.36.3227

[6]

A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119

[7]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[8]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[9]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[10]

Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure & Applied Analysis, 2009, 8 (2) : 601-620. doi: 10.3934/cpaa.2009.8.601

[11]

Pengyan Ding, Zhijian Yang. Attractors of the strongly damped Kirchhoff wave equation on $\mathbb{R}^{N}$. Communications on Pure & Applied Analysis, 2019, 18 (2) : 825-843. doi: 10.3934/cpaa.2019040

[12]

Abdelghafour Atlas. Regularity of the attractor for symmetric regularized wave equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 695-704. doi: 10.3934/cpaa.2005.4.695

[13]

Milena Stanislavova. On the global attractor for the damped Benjamin-Bona-Mahony equation. Conference Publications, 2005, 2005 (Special) : 824-832. doi: 10.3934/proc.2005.2005.824

[14]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[15]

Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065

[16]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[17]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[18]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[19]

V. Pata, Sergey Zelik. A remark on the damped wave equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 611-616. doi: 10.3934/cpaa.2006.5.611

[20]

Boling Guo, Zhaohui Huo. The global attractor of the damped, forced generalized Korteweg de Vries-Benjamin-Ono equation in $L^2$. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 121-136. doi: 10.3934/dcds.2006.16.121

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]