Citation: |
[1] |
A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions, Theoret. and Math. Phys., 133 (2002), 1463-1474.doi: 10.1023/A:1021186408422. |
[2] |
A. Degasperis, D. D. Holm and A. N. W. Hone, Integrable and non-integrable equations with peakons, Nonlinear physics: Theory and experiment, II (2002), 37-43. World Sci Publishing, River Edge, NJ, 2003. |
[3] |
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661. |
[4] |
F. Cooper and H. Shepard, Solitons in the Camassa-Holm shallow water equation, Phys. Lett. A, 194 (1994), 246-250.doi: 10.1016/0375-9601(94)91246-7. |
[5] |
A. Constantin, Soliton interactions for the Camassa-Holm equation, Exposition. Math., 15 (1997), 251-264. |
[6] |
A. Constantin and W. A. Strauss, Stability of Peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. |
[7] |
J. P. Boyd, Peakons and coshoidal waves: travelling wave solutions of the Camassa-Holm equation, Appl. Math. Comput., 81 (1997), 173-187.doi: http://dx.doi.org/10.1016/0096-3003(95)00326-6. |
[8] |
J. Lenells, The scattering approach for the Camassa-Holm equation, J. Non. Math. Phys., 9 (2002), 389-393.doi: 10.2991/jnmp.2002.9.4.2. |
[9] |
R. S. Johnson, Camassa-Holm, Korteweg-de Vries and rlated models for water waves, J. Fluid Mech., 455 (2002), 63-82.doi: 10.1017/S0022112001007224. |
[10] |
E. G. Reyes, Geometric integrability of the Camassa-Holm equation, Lett. Math. Phys., 59 (2002), 117-131.doi: 10.1023/A:1014933316169. |
[11] |
Z. R. Liu, R. Q. Wand and Z. J. Jing, Peaked wave solutions of Camassa-Holm equation, Chaos Solitons Fract., 19 (2004), 77-92.doi: 10.1016/S0960-0779(03)00082-1. |
[12] |
Z. R. Liu, A. M. Kayed and C. Chen, Periodic waves and their limits for the Camassa-Holm equation, Int. J. Bifurcat. Chaos, 16 (2006), 2261-2274.doi: 10.1142/S0218127406016045. |
[13] |
A. Degasperis and M. Procesi, Asymptotic integrability, in "Symmetry and Perturbation Theory" (eds. A.Degasperis and G.Gaeta), World Sci Publishing, (1999), 23-37. |
[14] |
H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Probl., 19 (2003), 1241-1245.doi: 10.1088/0266-5611/19/6/001. |
[15] |
H. Lundmark and J. Szmigielski, Degasperis-Procesi peakons and the discrete cubic string, Int. Math. Res. Pap., 2 (2005), 53-116.doi: 10.1155/IMRP.2005.53. |
[16] |
C. Chen and M. Y. Tang, A new type of bounded waves for Degasperis-Procesi equations, Chaos Soliton Fract., 27 (2006), 698-704.doi: 10.1016/j.chaos.2005.04.040. |
[17] |
P. Guha, Euler-Poincare formalism of (two component) Degasperis-Procesi and Holm-Staley type systems, J. Non. Math. Phys., 14 (2007), 390-421.doi: 10.2991/jnmp.2007.14.3.8. |
[18] |
D. D. Holm and M. F. Staley, Nonlinear balance and exchange of stability in dynamics of solitons, peakons ramps/cliffs and leftons in a $1+1$ nolinear evolutionary PDEs, Phys. Lett. A., 308 (2003), 437-444.doi: 10.1016/S0375-9601(03)00114-2. |
[19] |
B. L. Guo and Z. R. Liu, Periodic cusp wave solutions and single-solitons for the $b$-equation, Chaos Soliton Fract., 23 (2005), 1451-1463.doi: 10.1016/j.chaos.2004.06.062. |
[20] |
Z. R. Liu and T. F. Qian, Peakons and their bifurcation in a generalized Camassa-Holm equation, Int. J. Bifurcat. Chaos, 11 (2001), 781-792.doi: 10.1142/S0218127401002420. |
[21] |
A. M. Wazwaz, Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations, Phys. Lett. A, 352 (2006), 500-504.doi: 10.1016/j.physleta.2005.12.036. |
[22] |
A. M. Wazwaz, New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations, Appl. Math. Comput., 186 (2007), 130-141.doi: 10.1016/j.amc.2006.07.092. |
[23] |
L. X. Tian and X. Y. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation, Chaos Soliton Fract., 21 (2004), 621-637.doi: 10.1016/S0960-0779(03)00192-9. |
[24] |
J. W. Shen and W. Xu, Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation, Chaos Soliton Fract., 26 (2005), 1149-1162.doi: 10.1016/j.chaos.2005.02.021. |
[25] |
S. A. Khuri, New ansatz for obtaining wave solutions of the generalized Camassa-Holm equation, Chaos Soliton Fract., 25 (2005), 705-710.doi: 10.1016/j.chaos.2004.11.083. |
[26] |
Z. R. Liu and Z. Y. Ouyang, A note on solitary waves for modified forms of Camassa-Holm and Degasperis-Procesi equations, Phys. Lett. A, 366 (2007), 377-381.doi: 10.1016/j.physleta.2007.01.074. |
[27] |
B. He, W. G. Rui and C. Chen, Exact travelling wave solutions for a generalized Camassa-Holm equation using the integral bifurcation method, Appl. Math. Comput., 206 (2008), 141-149.doi: 10.1016/j.amc.2008.08.043. |
[28] |
Z. R. Liu and B. L. Guo, Periodic blow-up solutions and their limit forms for the generalized Camassa-Holm equation, Prog. Nat. Sci., 18 (2008), 259-266.doi: 10.1016/j.pnsc.2007.11.004. |
[29] |
L. J. Zhang, Q. C. Li and X. W. Huo, Bifurcations of smooth and nonsmooth travelling wave solutions in a generalized Degasperis-Procesi equation, J. Comput. Appl. Math., 205 (2007), 174-185.doi: 10.1016/j.cam.2006.04.047. |
[30] |
Q. D. Wang and M. Y. Tang, New exact solutions for two nonlinear equations, Phys. Lett. A, 372 (2008), 2995-3000.doi: 10.1016/j.physleta.2008.01.012. |
[31] |
E. Yomba, The sub-ODE method for finding exact travelling wave solutions of generalized nonlinear Camassa-Holm, and generalized nonlinear Schrödinger equations, Phys. Lett. A, 372 (2008), 215-222.doi: 10.1016/j.physleta.2007.03.008. |
[32] |
E. Yomba, A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equations, Phys. Lett. A, 372 (2008), 1048-1060.doi: 10.1016/j.physleta.2007.09.003. |
[33] |
B. He, W. G. Rui and S. L. Li, Bounded travelling wave solutions for a modified form of generalized Degasperis-Procesi equation, Appl. Math. Comput., 206 (2008), 113-123.doi: 10.1016/j.amc.2008.08.042. |
[34] |
Z. R. Liu and J. Pan, Coexistence of multifarious explicit nonlinear wave solutions for modified forms of Camassa-Holm and Degaperis-Procesi equations, Int. J. Bifurcat. Chaos, 19 (2009), 2267-2282.doi: 10.1142/S0218127409024050. |
[35] |
R. Liu, Several new types of solitary wave solutions for the generalized Camassa-Holm-Degasperis-Procesi equation, Commun. Pur. Appl. Anal., 9 (2010), 77-90.doi: 10.3934/cpaa.2010.9.77. |