\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence of a rotating wave pattern in a disk for a wave front interaction model

Abstract / Introduction Related Papers Cited by
  • We study the rotating wave patterns in an excitable medium in a disk. This wave pattern is rotating along the given disk boundary with a constant angular speed. To study this pattern we use the wave front interaction model proposed by Zykov in 2007. This model is derived from the FitzHugh-Nagumo equation and it can be described by two systems of ordinary differential equations for wave front and wave back respectively. Using a delicate shooting argument with the help of the comparison principle, we derive the existence and uniqueness of rotating wave patterns for any admissible angular speed with convex front in a given disk.
    Mathematics Subject Classification: Primary: 34B15, 34B60; Secondary: 35K57.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. Fiedler and A. Scheel, Spatio-temporal dynamics of reaction-diffusion patterns, In "Trends in Nonlinear Analysis" (M. Kirkilionis, S. Kromker, R. Rannacher and F. Tomi F. eds.), 23-152, Berlin, Heidelberg, New York, Springer, 2003.

    [2]

    P. bC. Fife, Understanding the patterns in the BZ reagent, J. Statist. Phys., 39 (1985), 687-703.doi: 10.1007/BF01008360.

    [3]

    J.-S. Guo, K.-I. Nakamura, T. Ogiwara and J.-C. Tsai, On the steadily rotating spirals, Japan J. Indust. Appl. Math., 23 (2006), 1-19.doi: 10.1007/BF03167495.

    [4]

    J.-S. Guo, H. Ninomiya and J.-C. Tsai, Existence and uniqueness of stabilized propagating wave segments in wave front interaction model, Physica D: Nonlinear Phenomena, 239 (2010), 230-239.doi: 10.1016/j.physd.2009.11.001.

    [5]

    P. Hartman, "Ordinary Differential Equations," SIAM, Philadelphia, 2002.doi: 10.1137/1.9780898719222.

    [6]

    A. Karma, Universal limit of spiral wave propagation in excitable media, Phys. Review Letters, 66 (1991), 2274-2277.doi: 10.1103/PhysRevLett.66.2274.

    [7]

    J. P. Keener and J. J. Tyson, Spiral waves in the Belousov-Zhabotinskii reaction, Physical D, 21 (1986), 307-324.doi: 10.1016/0167-2789(86)90007-2.

    [8]

    W. F. Loomis, "The Development of Dictyostelium Discoideum," Academic Press, New York, 1982.

    [9]

    E. Meron, Pattern formation in excitable media, Phys. Rep., 218 (1992), 1-66.doi: 10.1016/0370-1573(92)90098-K.

    [10]

    E. Mihaliuk, T. Sakurai, F. Chirila and K. Showalter, Experimental and theoretical studies of feedback stabilization of propagating wave segments, Faraday Discussions, 120 (2002), 383-394.doi: 10.1039/B103431F.

    [11]

    E. Mihaliuk, T. Sakurai, F. Chirila and K. Showalter, Feedback stabilization of unstable propagating waves, Phys. Review E. 65 (2002), 065602.doi: 10.1103/PhysRevE.65.065602.

    [12]

    A. S. Mikhailov, Modeling pattern formation in excitable media: The Legacy of Norbert Wiener, In "Epilepsy as a Dynamic Disease" (J. Milton and P. Jung eds.), Berlin, Heidelberg, New York, Springer, 2003.

    [13]

    A. S. Mikhailov and V. S. Zykov, Kinematical theory of spiral waves in excitable media: comparison with numerical simulations, Physica D, 52 (1991), 379-397.doi: 10.1016/0167-2789(91)90134-U.

    [14]

    J. D. Murray, "Mathematical Biology. I: An introduction," Springer-Verlag, New York, 2004.

    [15]

    P. Pelce and J. Sun, On the stability of steadily rotating waves in the free boundary formulation, Physica D, 63 (1993), 273-281.doi: 10.1016/0167-2789(93)90111-D.

    [16]

    Á. Tóth, V. Gaspar and K. Showalter, Signal transmission in chemical systems: propagation of chemical waves through capillary tubes, J. Phys. Chem., 98 (1994), 522-531.doi: 10.1021/j100053a029.

    [17]

    J. J. Tyson and J. P. Keener, Singular perturbation theory of traveling waves in excitable media (a review), Physica D, 32 (1988), 327-361.doi: 10.1016/0167-2789(88)90062-0.

    [18]

    N. Wiener and A. Rosenblueth, The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle, Arch. Inst. Cardiol. Mexico, 16 (1946), 205-265.

    [19]

    W. F. Winfree, "When Time Breaks Down," Princeton Univ. Press, Princeton, 1987.

    [20]

    V. S. Zykov, "Simulation of Wave Process in Excitable Media," Manchester University Press, 1984.

    [21]

    V. S. Zykov and K. Showalter, Wave front interaction model of stabilized propagating wave segments, Phys. Review Letters, 94 (2005), 068302.doi: 10.1103/PhysRevLett.94.068302.

    [22]

    V. S. Zykov, Selection mechanism for rotating patterns in weakly excitable media, Physical Review E, 75 (2007), 046203.doi: 10.1103/PhysRevE.75.046203.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(40) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return