March  2013, 12(2): 1049-1063. doi: 10.3934/cpaa.2013.12.1049

Existence of a rotating wave pattern in a disk for a wave front interaction model

1. 

Department of Mathematics, Tamkang University, 151, Ying-Chuan Road, Tamsui, Taipei County 25137

2. 

Department of Mathematics, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, 214-8571

3. 

Department of Applied Mathematics, National Chung Hsing University, 250, Kuo Kuang Road, Taichung 402

Received  July 2011 Revised  November 2011 Published  September 2012

We study the rotating wave patterns in an excitable medium in a disk. This wave pattern is rotating along the given disk boundary with a constant angular speed. To study this pattern we use the wave front interaction model proposed by Zykov in 2007. This model is derived from the FitzHugh-Nagumo equation and it can be described by two systems of ordinary differential equations for wave front and wave back respectively. Using a delicate shooting argument with the help of the comparison principle, we derive the existence and uniqueness of rotating wave patterns for any admissible angular speed with convex front in a given disk.
Citation: Jong-Shenq Guo, Hirokazu Ninomiya, Chin-Chin Wu. Existence of a rotating wave pattern in a disk for a wave front interaction model. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1049-1063. doi: 10.3934/cpaa.2013.12.1049
References:
[1]

B. Fiedler and A. Scheel, Spatio-temporal dynamics of reaction-diffusion patterns,, In, (2003), 23.   Google Scholar

[2]

P. bC. Fife, Understanding the patterns in the BZ reagent,, J. Statist. Phys., 39 (1985), 687.  doi: 10.1007/BF01008360.  Google Scholar

[3]

J.-S. Guo, K.-I. Nakamura, T. Ogiwara and J.-C. Tsai, On the steadily rotating spirals,, Japan J. Indust. Appl. Math., 23 (2006), 1.  doi: 10.1007/BF03167495.  Google Scholar

[4]

J.-S. Guo, H. Ninomiya and J.-C. Tsai, Existence and uniqueness of stabilized propagating wave segments in wave front interaction model,, Physica D: Nonlinear Phenomena, 239 (2010), 230.  doi: 10.1016/j.physd.2009.11.001.  Google Scholar

[5]

P. Hartman, "Ordinary Differential Equations,", SIAM, (2002).  doi: 10.1137/1.9780898719222.  Google Scholar

[6]

A. Karma, Universal limit of spiral wave propagation in excitable media,, Phys. Review Letters, 66 (1991), 2274.  doi: 10.1103/PhysRevLett.66.2274.  Google Scholar

[7]

J. P. Keener and J. J. Tyson, Spiral waves in the Belousov-Zhabotinskii reaction,, Physical D, 21 (1986), 307.  doi: 10.1016/0167-2789(86)90007-2.  Google Scholar

[8]

W. F. Loomis, "The Development of Dictyostelium Discoideum,", Academic Press, (1982).   Google Scholar

[9]

E. Meron, Pattern formation in excitable media,, Phys. Rep., 218 (1992), 1.  doi: 10.1016/0370-1573(92)90098-K.  Google Scholar

[10]

E. Mihaliuk, T. Sakurai, F. Chirila and K. Showalter, Experimental and theoretical studies of feedback stabilization of propagating wave segments,, Faraday Discussions, 120 (2002), 383.  doi: 10.1039/B103431F.  Google Scholar

[11]

E. Mihaliuk, T. Sakurai, F. Chirila and K. Showalter, Feedback stabilization of unstable propagating waves,, Phys. Review E. \textbf{65} (2002), 65 (2002).  doi: 10.1103/PhysRevE.65.065602.  Google Scholar

[12]

A. S. Mikhailov, Modeling pattern formation in excitable media: The Legacy of Norbert Wiener,, In, (2003).   Google Scholar

[13]

A. S. Mikhailov and V. S. Zykov, Kinematical theory of spiral waves in excitable media: comparison with numerical simulations,, Physica D, 52 (1991), 379.  doi: 10.1016/0167-2789(91)90134-U.  Google Scholar

[14]

J. D. Murray, "Mathematical Biology. I: An introduction,", Springer-Verlag, (2004).   Google Scholar

[15]

P. Pelce and J. Sun, On the stability of steadily rotating waves in the free boundary formulation,, Physica D, 63 (1993), 273.  doi: 10.1016/0167-2789(93)90111-D.  Google Scholar

[16]

Á. Tóth, V. Gaspar and K. Showalter, Signal transmission in chemical systems: propagation of chemical waves through capillary tubes,, J. Phys. Chem., 98 (1994), 522.  doi: 10.1021/j100053a029.  Google Scholar

[17]

J. J. Tyson and J. P. Keener, Singular perturbation theory of traveling waves in excitable media (a review),, Physica D, 32 (1988), 327.  doi: 10.1016/0167-2789(88)90062-0.  Google Scholar

[18]

N. Wiener and A. Rosenblueth, The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle,, Arch. Inst. Cardiol. Mexico, 16 (1946), 205.   Google Scholar

[19]

W. F. Winfree, "When Time Breaks Down,", Princeton Univ. Press, (1987).   Google Scholar

[20]

V. S. Zykov, "Simulation of Wave Process in Excitable Media,", Manchester University Press, (1984).   Google Scholar

[21]

V. S. Zykov and K. Showalter, Wave front interaction model of stabilized propagating wave segments,, Phys. Review Letters, 94 (2005).  doi: 10.1103/PhysRevLett.94.068302.  Google Scholar

[22]

V. S. Zykov, Selection mechanism for rotating patterns in weakly excitable media,, Physical Review E, 75 (2007).  doi: 10.1103/PhysRevE.75.046203.  Google Scholar

show all references

References:
[1]

B. Fiedler and A. Scheel, Spatio-temporal dynamics of reaction-diffusion patterns,, In, (2003), 23.   Google Scholar

[2]

P. bC. Fife, Understanding the patterns in the BZ reagent,, J. Statist. Phys., 39 (1985), 687.  doi: 10.1007/BF01008360.  Google Scholar

[3]

J.-S. Guo, K.-I. Nakamura, T. Ogiwara and J.-C. Tsai, On the steadily rotating spirals,, Japan J. Indust. Appl. Math., 23 (2006), 1.  doi: 10.1007/BF03167495.  Google Scholar

[4]

J.-S. Guo, H. Ninomiya and J.-C. Tsai, Existence and uniqueness of stabilized propagating wave segments in wave front interaction model,, Physica D: Nonlinear Phenomena, 239 (2010), 230.  doi: 10.1016/j.physd.2009.11.001.  Google Scholar

[5]

P. Hartman, "Ordinary Differential Equations,", SIAM, (2002).  doi: 10.1137/1.9780898719222.  Google Scholar

[6]

A. Karma, Universal limit of spiral wave propagation in excitable media,, Phys. Review Letters, 66 (1991), 2274.  doi: 10.1103/PhysRevLett.66.2274.  Google Scholar

[7]

J. P. Keener and J. J. Tyson, Spiral waves in the Belousov-Zhabotinskii reaction,, Physical D, 21 (1986), 307.  doi: 10.1016/0167-2789(86)90007-2.  Google Scholar

[8]

W. F. Loomis, "The Development of Dictyostelium Discoideum,", Academic Press, (1982).   Google Scholar

[9]

E. Meron, Pattern formation in excitable media,, Phys. Rep., 218 (1992), 1.  doi: 10.1016/0370-1573(92)90098-K.  Google Scholar

[10]

E. Mihaliuk, T. Sakurai, F. Chirila and K. Showalter, Experimental and theoretical studies of feedback stabilization of propagating wave segments,, Faraday Discussions, 120 (2002), 383.  doi: 10.1039/B103431F.  Google Scholar

[11]

E. Mihaliuk, T. Sakurai, F. Chirila and K. Showalter, Feedback stabilization of unstable propagating waves,, Phys. Review E. \textbf{65} (2002), 65 (2002).  doi: 10.1103/PhysRevE.65.065602.  Google Scholar

[12]

A. S. Mikhailov, Modeling pattern formation in excitable media: The Legacy of Norbert Wiener,, In, (2003).   Google Scholar

[13]

A. S. Mikhailov and V. S. Zykov, Kinematical theory of spiral waves in excitable media: comparison with numerical simulations,, Physica D, 52 (1991), 379.  doi: 10.1016/0167-2789(91)90134-U.  Google Scholar

[14]

J. D. Murray, "Mathematical Biology. I: An introduction,", Springer-Verlag, (2004).   Google Scholar

[15]

P. Pelce and J. Sun, On the stability of steadily rotating waves in the free boundary formulation,, Physica D, 63 (1993), 273.  doi: 10.1016/0167-2789(93)90111-D.  Google Scholar

[16]

Á. Tóth, V. Gaspar and K. Showalter, Signal transmission in chemical systems: propagation of chemical waves through capillary tubes,, J. Phys. Chem., 98 (1994), 522.  doi: 10.1021/j100053a029.  Google Scholar

[17]

J. J. Tyson and J. P. Keener, Singular perturbation theory of traveling waves in excitable media (a review),, Physica D, 32 (1988), 327.  doi: 10.1016/0167-2789(88)90062-0.  Google Scholar

[18]

N. Wiener and A. Rosenblueth, The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle,, Arch. Inst. Cardiol. Mexico, 16 (1946), 205.   Google Scholar

[19]

W. F. Winfree, "When Time Breaks Down,", Princeton Univ. Press, (1987).   Google Scholar

[20]

V. S. Zykov, "Simulation of Wave Process in Excitable Media,", Manchester University Press, (1984).   Google Scholar

[21]

V. S. Zykov and K. Showalter, Wave front interaction model of stabilized propagating wave segments,, Phys. Review Letters, 94 (2005).  doi: 10.1103/PhysRevLett.94.068302.  Google Scholar

[22]

V. S. Zykov, Selection mechanism for rotating patterns in weakly excitable media,, Physical Review E, 75 (2007).  doi: 10.1103/PhysRevE.75.046203.  Google Scholar

[1]

Elena Trofimchuk, Manuel Pinto, Sergei Trofimchuk. On the minimal speed of front propagation in a model of the Belousov-Zhabotinsky reaction. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1769-1781. doi: 10.3934/dcdsb.2014.19.1769

[2]

Xin Liu. Compressible viscous flows in a symmetric domain with complete slip boundary: The nonlinear stability of uniformly rotating states with small angular velocities. Communications on Pure & Applied Analysis, 2019, 18 (2) : 751-794. doi: 10.3934/cpaa.2019037

[3]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020047

[4]

A. Palacios. Identification of modulated rotating waves in pattern-forming systems with O(2) symmetry. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 129-147. doi: 10.3934/dcdsb.2002.2.129

[5]

Sebastian Acosta. A control approach to recover the wave speed (conformal factor) from one measurement. Inverse Problems & Imaging, 2015, 9 (2) : 301-315. doi: 10.3934/ipi.2015.9.301

[6]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[7]

Linghai Zhang. Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2405-2450. doi: 10.3934/dcds.2014.34.2405

[8]

Marcelo Disconzi, Daniel Toundykov, Justin T. Webster. Front matter. Evolution Equations & Control Theory, 2016, 5 (4) : i-iii. doi: 10.3934/eect.201604i

[9]

Shitao Liu. Recovery of the sound speed and initial displacement for the wave equation by means of a single Dirichlet boundary measurement. Evolution Equations & Control Theory, 2013, 2 (2) : 355-364. doi: 10.3934/eect.2013.2.355

[10]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[11]

Alain Chenciner. The angular momentum of a relative equilibrium. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1033-1047. doi: 10.3934/dcds.2013.33.1033

[12]

Joshua Cape, Hans-Christian Herbig, Christopher Seaton. Symplectic reduction at zero angular momentum. Journal of Geometric Mechanics, 2016, 8 (1) : 13-34. doi: 10.3934/jgm.2016.8.13

[13]

Debora Amadori, Wen Shen. Front tracking approximations for slow erosion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1481-1502. doi: 10.3934/dcds.2012.32.1481

[14]

Claudio Meneses. Linear phase space deformations with angular momentum symmetry. Journal of Geometric Mechanics, 2019, 11 (1) : 45-58. doi: 10.3934/jgm.2019003

[15]

Yaling Cui, Srdjan D. Stojanovic. Equity valuation under stock dilution and buy-back. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1809-1829. doi: 10.3934/dcdsb.2012.17.1809

[16]

Peter Constantin. Transport in rotating fluids. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 165-176. doi: 10.3934/dcds.2004.10.165

[17]

D. Bresch, B. Desjardins, D. Gérard-Varet. Rotating fluids in a cylinder. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 47-82. doi: 10.3934/dcds.2004.11.47

[18]

Mohar Guha, Keith Promislow. Front propagation in a noisy, nonsmooth, excitable medium. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 617-638. doi: 10.3934/dcds.2009.23.617

[19]

Yana Nec, Vladimir A Volpert, Alexander A Nepomnyashchy. Front propagation problems with sub-diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 827-846. doi: 10.3934/dcds.2010.27.827

[20]

Mathieu Desbrun, Evan S. Gawlik, François Gay-Balmaz, Vladimir Zeitlin. Variational discretization for rotating stratified fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 477-509. doi: 10.3934/dcds.2014.34.477

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]