• Previous Article
    Qualitative analysis to the traveling wave solutions of Kakutani-Kawahara equation and its approximate damped oscillatory solution
  • CPAA Home
  • This Issue
  • Next Article
    Existence of a rotating wave pattern in a disk for a wave front interaction model
March  2013, 12(2): 1065-1074. doi: 10.3934/cpaa.2013.12.1065

Travelling wave solutions of a free boundary problem for a two-species competitive model

1. 

Department of Mathematics, National Taiwan University, National Taiwan University, Taipei, 10617, Taiwan

2. 

Department of Mathematics, National Taiwan University, and National Center for Theoretical Sciences (Taipei Office), No. 1, Sec. 4, Roosevelt Road, Taipei, 10617

Received  August 2011 Revised  April 2012 Published  September 2012

We study a di usive logistic system with a free boundary in ecology proposed by Mimura, Yamada and Yotsutani [10]. Motivated by the spreading-vanishing dichotomy obtained by Du and Lin [1], we suppose the spreading speed of the free boundary tends to a constant as time tends to in nity and consider the corresponding travelling wave problem. We establish the existence and uniqueness of a travelling wave solution for this free boundary problem.
Citation: Chueh-Hsin Chang, Chiun-Chuan Chen. Travelling wave solutions of a free boundary problem for a two-species competitive model. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1065-1074. doi: 10.3934/cpaa.2013.12.1065
References:
[1]

Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377.  doi: 10.1137/090771089.  Google Scholar

[2]

Y. Du and Z. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary II,, J. Differential Equations, 250 (2011), 4336.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[3]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions,, Arch. Ration. Mech. Anal., 65 (1977), 335.  doi: 10.1007/BF00250432.  Google Scholar

[4]

D. Hilhorst, M. Mimura and R. Schätzle, Vanishing latent heat limit in a Stefan-like problem arising in biology,, Nonlinear Anal. Real World Appl., 4 (2003), 261.  doi: 10.1016/S1468-1218(02)00009-3.  Google Scholar

[5]

K. I. Kim and Z. Lin, A free boundary problem for a parabolic system describing an ecological model,, Nonlinear Anal. Real World Appl., 10 (2009), 428.  doi: 10.1016/j.nonrwa.2007.10.003.  Google Scholar

[6]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'equations de la diffusion avec croissance de la quantite de matiere et son application a un probleme biologique,, Bull. Univ. Moscou S'er. Internat., A1 (1937), 1.   Google Scholar

[7]

Z. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883.  doi: 10.1088/0951-7715/20/8/004.  Google Scholar

[8]

Z. Ling, Q. Tang and Z. Lin, A free boundary problem for two-species competitive model in ecology,, Nonlinear Anal. Real World Appl., 11 (2010), 1775.  doi: 10.1016/j.nonrwa.2009.04.001.  Google Scholar

[9]

J. L. Lockwood, M. F. Hoopes and M. P. Marchetti, "Invasion Ecology,", Blackwell Pub-lishing, (2007).   Google Scholar

[10]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan J. Appl. Math., 2 (1985), 151.  doi: 10.1007/BF03167042.  Google Scholar

[11]

M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology,, Hiroshima Math. J., 16 (1986), 477.   Google Scholar

[12]

M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations,, Hiroshima Math. J., 17 (1987), 241.   Google Scholar

[13]

N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice,", Oxford Series in Ecology and Evolution, (1997).   Google Scholar

[14]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.   Google Scholar

[15]

A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Translations of Mathematical Monographs, 140 (1994).   Google Scholar

show all references

References:
[1]

Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377.  doi: 10.1137/090771089.  Google Scholar

[2]

Y. Du and Z. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary II,, J. Differential Equations, 250 (2011), 4336.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[3]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions,, Arch. Ration. Mech. Anal., 65 (1977), 335.  doi: 10.1007/BF00250432.  Google Scholar

[4]

D. Hilhorst, M. Mimura and R. Schätzle, Vanishing latent heat limit in a Stefan-like problem arising in biology,, Nonlinear Anal. Real World Appl., 4 (2003), 261.  doi: 10.1016/S1468-1218(02)00009-3.  Google Scholar

[5]

K. I. Kim and Z. Lin, A free boundary problem for a parabolic system describing an ecological model,, Nonlinear Anal. Real World Appl., 10 (2009), 428.  doi: 10.1016/j.nonrwa.2007.10.003.  Google Scholar

[6]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'equations de la diffusion avec croissance de la quantite de matiere et son application a un probleme biologique,, Bull. Univ. Moscou S'er. Internat., A1 (1937), 1.   Google Scholar

[7]

Z. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883.  doi: 10.1088/0951-7715/20/8/004.  Google Scholar

[8]

Z. Ling, Q. Tang and Z. Lin, A free boundary problem for two-species competitive model in ecology,, Nonlinear Anal. Real World Appl., 11 (2010), 1775.  doi: 10.1016/j.nonrwa.2009.04.001.  Google Scholar

[9]

J. L. Lockwood, M. F. Hoopes and M. P. Marchetti, "Invasion Ecology,", Blackwell Pub-lishing, (2007).   Google Scholar

[10]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan J. Appl. Math., 2 (1985), 151.  doi: 10.1007/BF03167042.  Google Scholar

[11]

M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology,, Hiroshima Math. J., 16 (1986), 477.   Google Scholar

[12]

M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations,, Hiroshima Math. J., 17 (1987), 241.   Google Scholar

[13]

N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice,", Oxford Series in Ecology and Evolution, (1997).   Google Scholar

[14]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.   Google Scholar

[15]

A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Translations of Mathematical Monographs, 140 (1994).   Google Scholar

[1]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[2]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[3]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[4]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[5]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[6]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[7]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[8]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[9]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[10]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020402

[11]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[12]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[13]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[14]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[15]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[16]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[17]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[18]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[19]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[20]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]