\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Travelling wave solutions of a free boundary problem for a two-species competitive model

Abstract / Introduction Related Papers Cited by
  • We study a di usive logistic system with a free boundary in ecology proposed by Mimura, Yamada and Yotsutani [10]. Motivated by the spreading-vanishing dichotomy obtained by Du and Lin [1], we suppose the spreading speed of the free boundary tends to a constant as time tends to in nity and consider the corresponding travelling wave problem. We establish the existence and uniqueness of a travelling wave solution for this free boundary problem.
    Mathematics Subject Classification: 35K57, 35C07, 35R35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405. Correction in: http://turing.une.edu.au/ ydu/papers/DuLin-siam-10-correction.pdf.doi: 10.1137/090771089.

    [2]

    Y. Du and Z. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary II, J. Differential Equations, 250 (2011), 4336-4366.doi: 10.1016/j.jde.2011.02.011.

    [3]

    P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.doi: 10.1007/BF00250432.

    [4]

    D. Hilhorst, M. Mimura and R. Schätzle, Vanishing latent heat limit in a Stefan-like problem arising in biology, Nonlinear Anal. Real World Appl., 4 (2003), 261-285.doi: 10.1016/S1468-1218(02)00009-3.

    [5]

    K. I. Kim and Z. Lin, A free boundary problem for a parabolic system describing an ecological model, Nonlinear Anal. Real World Appl., 10 (2009), 428-436.doi: 10.1016/j.nonrwa.2007.10.003.

    [6]

    A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'equations de la diffusion avec croissance de la quantite de matiere et son application a un probleme biologique, Bull. Univ. Moscou S'er. Internat., A1 (1937), 1-26. English transl. in Dynamics of Curved Fronts, P. Pelc'e (ed.), Academic Press, 1988, 105-130.

    [7]

    Z. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892.doi: 10.1088/0951-7715/20/8/004.

    [8]

    Z. Ling, Q. Tang and Z. Lin, A free boundary problem for two-species competitive model in ecology, Nonlinear Anal. Real World Appl., 11 (2010), 1775-1781.doi: 10.1016/j.nonrwa.2009.04.001.

    [9]

    J. L. Lockwood, M. F. Hoopes and M. P. Marchetti, "Invasion Ecology," Blackwell Pub-lishing, Oxford, 2007.

    [10]

    M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology, Japan J. Appl. Math., 2 (1985), 151-186.doi: 10.1007/BF03167042.

    [11]

    M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology, Hiroshima Math. J., 16 (1986), 477-498.

    [12]

    M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations, Hiroshima Math. J., 17 (1987), 241-280.

    [13]

    N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice," Oxford Series in Ecology and Evolution, Oxford University Press, Oxford, 1997.

    [14]

    J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.

    [15]

    A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems," Translations of Mathematical Monographs, 140, Amer. Math. Soc., Providence, 1994.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return