-
Previous Article
Qualitative analysis to the traveling wave solutions of Kakutani-Kawahara equation and its approximate damped oscillatory solution
- CPAA Home
- This Issue
-
Next Article
Existence of a rotating wave pattern in a disk for a wave front interaction model
Travelling wave solutions of a free boundary problem for a two-species competitive model
1. | Department of Mathematics, National Taiwan University, National Taiwan University, Taipei, 10617, Taiwan |
2. | Department of Mathematics, National Taiwan University, and National Center for Theoretical Sciences (Taipei Office), No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 |
References:
[1] |
Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405. Correction in: http://turing.une.edu.au/ ydu/papers/DuLin-siam-10-correction.pdf.
doi: 10.1137/090771089. |
[2] |
Y. Du and Z. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary II, J. Differential Equations, 250 (2011), 4336-4366.
doi: 10.1016/j.jde.2011.02.011. |
[3] |
P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.
doi: 10.1007/BF00250432. |
[4] |
D. Hilhorst, M. Mimura and R. Schätzle, Vanishing latent heat limit in a Stefan-like problem arising in biology, Nonlinear Anal. Real World Appl., 4 (2003), 261-285.
doi: 10.1016/S1468-1218(02)00009-3. |
[5] |
K. I. Kim and Z. Lin, A free boundary problem for a parabolic system describing an ecological model, Nonlinear Anal. Real World Appl., 10 (2009), 428-436.
doi: 10.1016/j.nonrwa.2007.10.003. |
[6] |
A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'equations de la diffusion avec croissance de la quantite de matiere et son application a un probleme biologique, Bull. Univ. Moscou S'er. Internat., A1 (1937), 1-26. English transl. in Dynamics of Curved Fronts, P. Pelc'e (ed.), Academic Press, 1988, 105-130. |
[7] |
Z. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892.
doi: 10.1088/0951-7715/20/8/004. |
[8] |
Z. Ling, Q. Tang and Z. Lin, A free boundary problem for two-species competitive model in ecology, Nonlinear Anal. Real World Appl., 11 (2010), 1775-1781.
doi: 10.1016/j.nonrwa.2009.04.001. |
[9] |
J. L. Lockwood, M. F. Hoopes and M. P. Marchetti, "Invasion Ecology," Blackwell Pub-lishing, Oxford, 2007. |
[10] |
M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology, Japan J. Appl. Math., 2 (1985), 151-186.
doi: 10.1007/BF03167042. |
[11] |
M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology, Hiroshima Math. J., 16 (1986), 477-498. |
[12] |
M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations, Hiroshima Math. J., 17 (1987), 241-280. |
[13] |
N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice," Oxford Series in Ecology and Evolution, Oxford University Press, Oxford, 1997. |
[14] |
J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218. |
[15] |
A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems," Translations of Mathematical Monographs, 140, Amer. Math. Soc., Providence, 1994. |
show all references
References:
[1] |
Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405. Correction in: http://turing.une.edu.au/ ydu/papers/DuLin-siam-10-correction.pdf.
doi: 10.1137/090771089. |
[2] |
Y. Du and Z. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary II, J. Differential Equations, 250 (2011), 4336-4366.
doi: 10.1016/j.jde.2011.02.011. |
[3] |
P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.
doi: 10.1007/BF00250432. |
[4] |
D. Hilhorst, M. Mimura and R. Schätzle, Vanishing latent heat limit in a Stefan-like problem arising in biology, Nonlinear Anal. Real World Appl., 4 (2003), 261-285.
doi: 10.1016/S1468-1218(02)00009-3. |
[5] |
K. I. Kim and Z. Lin, A free boundary problem for a parabolic system describing an ecological model, Nonlinear Anal. Real World Appl., 10 (2009), 428-436.
doi: 10.1016/j.nonrwa.2007.10.003. |
[6] |
A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'equations de la diffusion avec croissance de la quantite de matiere et son application a un probleme biologique, Bull. Univ. Moscou S'er. Internat., A1 (1937), 1-26. English transl. in Dynamics of Curved Fronts, P. Pelc'e (ed.), Academic Press, 1988, 105-130. |
[7] |
Z. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892.
doi: 10.1088/0951-7715/20/8/004. |
[8] |
Z. Ling, Q. Tang and Z. Lin, A free boundary problem for two-species competitive model in ecology, Nonlinear Anal. Real World Appl., 11 (2010), 1775-1781.
doi: 10.1016/j.nonrwa.2009.04.001. |
[9] |
J. L. Lockwood, M. F. Hoopes and M. P. Marchetti, "Invasion Ecology," Blackwell Pub-lishing, Oxford, 2007. |
[10] |
M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology, Japan J. Appl. Math., 2 (1985), 151-186.
doi: 10.1007/BF03167042. |
[11] |
M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology, Hiroshima Math. J., 16 (1986), 477-498. |
[12] |
M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations, Hiroshima Math. J., 17 (1987), 241-280. |
[13] |
N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice," Oxford Series in Ecology and Evolution, Oxford University Press, Oxford, 1997. |
[14] |
J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218. |
[15] |
A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems," Translations of Mathematical Monographs, 140, Amer. Math. Soc., Providence, 1994. |
[1] |
Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks and Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583 |
[2] |
Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087 |
[3] |
Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5223-5262. doi: 10.3934/dcds.2019213 |
[4] |
Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785 |
[5] |
Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441 |
[6] |
Meng Zhao, Wan-Tong Li, Wenjie Ni. Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 981-999. doi: 10.3934/dcdsb.2019199 |
[7] |
Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003 |
[8] |
Harunori Monobe, Hirokazu Ninomiya. Traveling wave solutions with convex domains for a free boundary problem. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 905-914. doi: 10.3934/dcds.2017037 |
[9] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1797-1809. doi: 10.3934/dcdsb.2021028 |
[10] |
Fang Li, Xing Liang, Wenxian Shen. Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3317-3338. doi: 10.3934/dcds.2016.36.3317 |
[11] |
Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125. |
[12] |
Mudassar Imran, Youssef Raffoul, Muhammad Usman, Chi Zhang. A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 691-705. doi: 10.3934/dcdss.2018043 |
[13] |
Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic type chemotaxis model. Kinetic and Related Models, 2015, 8 (4) : 667-684. doi: 10.3934/krm.2015.8.667 |
[14] |
Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic-elliptic type chemotaxis model. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2577-2592. doi: 10.3934/cpaa.2018122 |
[15] |
Yoshiho Akagawa, Elliott Ginder, Syota Koide, Seiro Omata, Karel Svadlenka. A Crank-Nicolson type minimization scheme for a hyperbolic free boundary problem. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2661-2681. doi: 10.3934/dcdsb.2021153 |
[16] |
Shitao Liu. Recovery of the sound speed and initial displacement for the wave equation by means of a single Dirichlet boundary measurement. Evolution Equations and Control Theory, 2013, 2 (2) : 355-364. doi: 10.3934/eect.2013.2.355 |
[17] |
Mohammed Mesk, Ali Moussaoui. On an upper bound for the spreading speed. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3897-3912. doi: 10.3934/dcdsb.2021210 |
[18] |
Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121 |
[19] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[20] |
Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]