-
Previous Article
Blow-up for semilinear parabolic equations with critical Sobolev exponent
- CPAA Home
- This Issue
-
Next Article
Qualitative analysis to the traveling wave solutions of Kakutani-Kawahara equation and its approximate damped oscillatory solution
Limit cycles of non-autonomous scalar ODEs with two summands
1. | Departamento de Matemáticas, Universidad de Extremadura, Badajoz, 06071 |
2. | Departamento de Matemáticas, Universidad de Extremadura, Facultad de Ciencias, 06071 Badajoz |
References:
[1] |
N. Alkoumi and P. J. Torres, On the number of limit cycles of a generalized Abel equation,, Czech. Math. J., 61 (2011), 73.
doi: 10.1007/s10587-011-0018-x. |
[2] |
N. Alkoumi and P. J. Torres, Estimates on the number of limit cycles of a generalized Abel equation,, Discrete Contin. Dyn. Syst., 31 (2011), 25.
doi: 10.3934/dcds.2011.31.25. |
[3] |
A. Álvarez, J. L. Bravo and M. Fernández, The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign,, Commun. Pure Appl. Anal., 8 (2009), 1493.
doi: 10.3934/cpaa.2009.8.1493. |
[4] |
A. Álvarez, J. L. Bravo and M. Fernández, Abel-like differential equations with a unique limit cycle,, Nonlinear Anal. T.M.A., 74 (2011), 3694.
doi: 10.1016/j.na.2011.02.049. |
[5] |
A. Álvarez, J. L. Bravo and M. Fernández, Uniqueness of limit cycles for polynomial first-order differential equations,, J. Math. Anal. Appl., 360 (2009), 168.
doi: 10.1016/j.jmaa.2009.06.031. |
[6] |
M. J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations,, J. Differential Equations, 234 (2007), 161.
doi: 10.1016/j.jde.2006.11.004. |
[7] |
M. A. M. Alwash, Periodic solutions of Abel differential equations,, J. Math. Anal. Appl., 329 (2007), 1161.
doi: 10.1016/j.jmaa.2006.07.039. |
[8] |
M. A. M. Alwash and N. G. Lloyd, Nonautonomous equations related to polynomial two dimensional systems,, Proc. Roy. Soc.Edinburgh, 105A (1987), 129.
doi: 10.1017/S0308210500021971. |
[9] |
D. M. Benardete, V. W. Noonburg and B. Pollina, Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation,, Amer. Math. Monthly, 115 (2008), 202.
|
[10] |
J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs,, Int. J. Bif. Chaos, 19 (2009), 3869.
doi: 10.1142/S0218127409025195. |
[11] |
J. L. Bravo and J. Torregrosa, Abel-like equations with no periodic solutions,, J. Math. Anal. Appl., 342 (2008), 931.
doi: 10.1016/j.jmaa.2007.12.060. |
[12] |
M. Chamberland and A. Gasull, Chini equations and isochronous centers in three-dimensional differential systems., Qual. Theory Dyn. Syst., 9 (2010), 29.
doi: 10.1007/s12346-010-0019-4. |
[13] |
J. Devlin, N. G. Lloyd and J. M. Pearson, Cubic systems and Abel equations,, J. Differential Equations, 147 (1998), 435.
doi: 10.1006/jdeq.1998.3420. |
[14] |
A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations,, Int. J. Bif. Chaos, 16 (2006), 3737.
doi: 10.1142/S0218127406017130. |
[15] |
A. Gasull and J. Llibre, Limit cycles for a class of Abel equations,, SIAM J. Math. Anal., 21 (1990), 1235.
doi: 10.1137/0521068. |
[16] |
A. Gasull, R. Prohens and J. Torregrosa, Limit cycles for rigid cubic systems,, J. Math. Anal. Appl., 303 (2005), 391.
doi: 10.1016/j.jmaa.2004.07.030. |
[17] |
A. Gasull and J. Torregrosa, Some results on rigid systems,, In International Conference on Differential Equations (Equadiff-2003), (2005), 340.
|
[18] |
Yu. Ilyashenko, Centennial history of Hilbert's 16th problem,, Bull. Amer. Math. Soc., 39 (2002), 301.
doi: 10.1090/S0273-0979-02-00946-1. |
[19] |
A. Lins Neto, On the number of solutions of the equation $\frac{d x}{d t}=\sum_{j=0} ^n a_j(t)x^j$, $0 \leq t \leq 1$, for which $x(0)=x(1)$}, , Inv. Math., 59 (1980), 67.
|
[20] |
N. G. Lloyd, The number of periodic solutions of the equation $\dot z = z^N+ p_1(t) z^{N-1} +\cdots +p_N(t)$, , Proc. London Math. Soc., 27 (1973), 667.
doi: 10.1112/plms/s3-27.4.667. |
[21] |
N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems,, J. London Math. Soc., 20 (1979), 277.
doi: 10.1112/jlms/s2-20.2.277. |
[22] |
J. M. Olm, X. Ros-Oton and T. M. Seara, Periodic solutions with non-constant sign in Abel equations of the second kind,, J. Math. Anal. Appl., 381 (2011), 582.
doi: 10.1016/j.jmaa.2011.02.084. |
[23] |
V. A. Pliss, "Non-Local Problems of the Theory of Oscillations,", Academic Press, (1966).
|
[24] |
Wolfram Research, Inc., "Mathematica, Version 8.0,", Champaign, (2010). Google Scholar |
show all references
References:
[1] |
N. Alkoumi and P. J. Torres, On the number of limit cycles of a generalized Abel equation,, Czech. Math. J., 61 (2011), 73.
doi: 10.1007/s10587-011-0018-x. |
[2] |
N. Alkoumi and P. J. Torres, Estimates on the number of limit cycles of a generalized Abel equation,, Discrete Contin. Dyn. Syst., 31 (2011), 25.
doi: 10.3934/dcds.2011.31.25. |
[3] |
A. Álvarez, J. L. Bravo and M. Fernández, The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign,, Commun. Pure Appl. Anal., 8 (2009), 1493.
doi: 10.3934/cpaa.2009.8.1493. |
[4] |
A. Álvarez, J. L. Bravo and M. Fernández, Abel-like differential equations with a unique limit cycle,, Nonlinear Anal. T.M.A., 74 (2011), 3694.
doi: 10.1016/j.na.2011.02.049. |
[5] |
A. Álvarez, J. L. Bravo and M. Fernández, Uniqueness of limit cycles for polynomial first-order differential equations,, J. Math. Anal. Appl., 360 (2009), 168.
doi: 10.1016/j.jmaa.2009.06.031. |
[6] |
M. J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations,, J. Differential Equations, 234 (2007), 161.
doi: 10.1016/j.jde.2006.11.004. |
[7] |
M. A. M. Alwash, Periodic solutions of Abel differential equations,, J. Math. Anal. Appl., 329 (2007), 1161.
doi: 10.1016/j.jmaa.2006.07.039. |
[8] |
M. A. M. Alwash and N. G. Lloyd, Nonautonomous equations related to polynomial two dimensional systems,, Proc. Roy. Soc.Edinburgh, 105A (1987), 129.
doi: 10.1017/S0308210500021971. |
[9] |
D. M. Benardete, V. W. Noonburg and B. Pollina, Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation,, Amer. Math. Monthly, 115 (2008), 202.
|
[10] |
J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs,, Int. J. Bif. Chaos, 19 (2009), 3869.
doi: 10.1142/S0218127409025195. |
[11] |
J. L. Bravo and J. Torregrosa, Abel-like equations with no periodic solutions,, J. Math. Anal. Appl., 342 (2008), 931.
doi: 10.1016/j.jmaa.2007.12.060. |
[12] |
M. Chamberland and A. Gasull, Chini equations and isochronous centers in three-dimensional differential systems., Qual. Theory Dyn. Syst., 9 (2010), 29.
doi: 10.1007/s12346-010-0019-4. |
[13] |
J. Devlin, N. G. Lloyd and J. M. Pearson, Cubic systems and Abel equations,, J. Differential Equations, 147 (1998), 435.
doi: 10.1006/jdeq.1998.3420. |
[14] |
A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations,, Int. J. Bif. Chaos, 16 (2006), 3737.
doi: 10.1142/S0218127406017130. |
[15] |
A. Gasull and J. Llibre, Limit cycles for a class of Abel equations,, SIAM J. Math. Anal., 21 (1990), 1235.
doi: 10.1137/0521068. |
[16] |
A. Gasull, R. Prohens and J. Torregrosa, Limit cycles for rigid cubic systems,, J. Math. Anal. Appl., 303 (2005), 391.
doi: 10.1016/j.jmaa.2004.07.030. |
[17] |
A. Gasull and J. Torregrosa, Some results on rigid systems,, In International Conference on Differential Equations (Equadiff-2003), (2005), 340.
|
[18] |
Yu. Ilyashenko, Centennial history of Hilbert's 16th problem,, Bull. Amer. Math. Soc., 39 (2002), 301.
doi: 10.1090/S0273-0979-02-00946-1. |
[19] |
A. Lins Neto, On the number of solutions of the equation $\frac{d x}{d t}=\sum_{j=0} ^n a_j(t)x^j$, $0 \leq t \leq 1$, for which $x(0)=x(1)$}, , Inv. Math., 59 (1980), 67.
|
[20] |
N. G. Lloyd, The number of periodic solutions of the equation $\dot z = z^N+ p_1(t) z^{N-1} +\cdots +p_N(t)$, , Proc. London Math. Soc., 27 (1973), 667.
doi: 10.1112/plms/s3-27.4.667. |
[21] |
N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems,, J. London Math. Soc., 20 (1979), 277.
doi: 10.1112/jlms/s2-20.2.277. |
[22] |
J. M. Olm, X. Ros-Oton and T. M. Seara, Periodic solutions with non-constant sign in Abel equations of the second kind,, J. Math. Anal. Appl., 381 (2011), 582.
doi: 10.1016/j.jmaa.2011.02.084. |
[23] |
V. A. Pliss, "Non-Local Problems of the Theory of Oscillations,", Academic Press, (1966).
|
[24] |
Wolfram Research, Inc., "Mathematica, Version 8.0,", Champaign, (2010). Google Scholar |
[1] |
Jaume Llibre, Claudia Valls. Rational limit cycles of abel equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021007 |
[2] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[3] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[4] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[5] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
[6] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[7] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[8] |
Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169 |
[9] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[10] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[11] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021010 |
[12] |
Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021006 |
[13] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[14] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[15] |
Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 |
[16] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
[17] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[18] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
[19] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[20] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]