• Previous Article
    Blow-up for semilinear parabolic equations with critical Sobolev exponent
  • CPAA Home
  • This Issue
  • Next Article
    Qualitative analysis to the traveling wave solutions of Kakutani-Kawahara equation and its approximate damped oscillatory solution
March  2013, 12(2): 1091-1102. doi: 10.3934/cpaa.2013.12.1091

Limit cycles of non-autonomous scalar ODEs with two summands

1. 

Departamento de Matemáticas, Universidad de Extremadura, Badajoz, 06071

2. 

Departamento de Matemáticas, Universidad de Extremadura, Facultad de Ciencias, 06071 Badajoz

Received  August 2011 Revised  January 2012 Published  September 2012

We establish upper bounds for the number of limit cycles (isolated periodic solutions in the set of periodic solutions) of the two families of scalar ordinary differential equations $x'=(a(t) x +b(t)) f(x)$ and $x'=a(t) g(x) +b(t)f(x)$, where $f(x)$ and $g(x)$ are analytic funtions and $a(t)$, $b(t)$ are $T$--periodic continuous functions for which there exist $\alpha, \beta \in R$ such that $\alpha a(t)+\beta b(t)$ is not identically zero and does not change sign in $[0,T]$. As a consequence we obtain that generalized Abel equations $x'=a(t)x^n + b(t)x^m$, where $n> m \geq 1$ are natural numbers, have at most three limit cycles.
Citation: José-Luis Bravo, Manuel Fernández. Limit cycles of non-autonomous scalar ODEs with two summands. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1091-1102. doi: 10.3934/cpaa.2013.12.1091
References:
[1]

N. Alkoumi and P. J. Torres, On the number of limit cycles of a generalized Abel equation,, Czech. Math. J., 61 (2011), 73.  doi: 10.1007/s10587-011-0018-x.  Google Scholar

[2]

N. Alkoumi and P. J. Torres, Estimates on the number of limit cycles of a generalized Abel equation,, Discrete Contin. Dyn. Syst., 31 (2011), 25.  doi: 10.3934/dcds.2011.31.25.  Google Scholar

[3]

A. Álvarez, J. L. Bravo and M. Fernández, The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign,, Commun. Pure Appl. Anal., 8 (2009), 1493.  doi: 10.3934/cpaa.2009.8.1493.  Google Scholar

[4]

A. Álvarez, J. L. Bravo and M. Fernández, Abel-like differential equations with a unique limit cycle,, Nonlinear Anal. T.M.A., 74 (2011), 3694.  doi: 10.1016/j.na.2011.02.049.  Google Scholar

[5]

A. Álvarez, J. L. Bravo and M. Fernández, Uniqueness of limit cycles for polynomial first-order differential equations,, J. Math. Anal. Appl., 360 (2009), 168.  doi: 10.1016/j.jmaa.2009.06.031.  Google Scholar

[6]

M. J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations,, J. Differential Equations, 234 (2007), 161.  doi: 10.1016/j.jde.2006.11.004.  Google Scholar

[7]

M. A. M. Alwash, Periodic solutions of Abel differential equations,, J. Math. Anal. Appl., 329 (2007), 1161.  doi: 10.1016/j.jmaa.2006.07.039.  Google Scholar

[8]

M. A. M. Alwash and N. G. Lloyd, Nonautonomous equations related to polynomial two dimensional systems,, Proc. Roy. Soc.Edinburgh, 105A (1987), 129.  doi: 10.1017/S0308210500021971.  Google Scholar

[9]

D. M. Benardete, V. W. Noonburg and B. Pollina, Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation,, Amer. Math. Monthly, 115 (2008), 202.   Google Scholar

[10]

J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs,, Int. J. Bif. Chaos, 19 (2009), 3869.  doi: 10.1142/S0218127409025195.  Google Scholar

[11]

J. L. Bravo and J. Torregrosa, Abel-like equations with no periodic solutions,, J. Math. Anal. Appl., 342 (2008), 931.  doi: 10.1016/j.jmaa.2007.12.060.  Google Scholar

[12]

M. Chamberland and A. Gasull, Chini equations and isochronous centers in three-dimensional differential systems., Qual. Theory Dyn. Syst., 9 (2010), 29.  doi: 10.1007/s12346-010-0019-4.  Google Scholar

[13]

J. Devlin, N. G. Lloyd and J. M. Pearson, Cubic systems and Abel equations,, J. Differential Equations, 147 (1998), 435.  doi: 10.1006/jdeq.1998.3420.  Google Scholar

[14]

A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations,, Int. J. Bif. Chaos, 16 (2006), 3737.  doi: 10.1142/S0218127406017130.  Google Scholar

[15]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equations,, SIAM J. Math. Anal., 21 (1990), 1235.  doi: 10.1137/0521068.  Google Scholar

[16]

A. Gasull, R. Prohens and J. Torregrosa, Limit cycles for rigid cubic systems,, J. Math. Anal. Appl., 303 (2005), 391.  doi: 10.1016/j.jmaa.2004.07.030.  Google Scholar

[17]

A. Gasull and J. Torregrosa, Some results on rigid systems,, In International Conference on Differential Equations (Equadiff-2003), (2005), 340.   Google Scholar

[18]

Yu. Ilyashenko, Centennial history of Hilbert's 16th problem,, Bull. Amer. Math. Soc., 39 (2002), 301.  doi: 10.1090/S0273-0979-02-00946-1.  Google Scholar

[19]

A. Lins Neto, On the number of solutions of the equation $\frac{d x}{d t}=\sum_{j=0} ^n a_j(t)x^j$, $0 \leq t \leq 1$, for which $x(0)=x(1)$}, , Inv. Math., 59 (1980), 67.   Google Scholar

[20]

N. G. Lloyd, The number of periodic solutions of the equation $\dot z = z^N+ p_1(t) z^{N-1} +\cdots +p_N(t)$, , Proc. London Math. Soc., 27 (1973), 667.  doi: 10.1112/plms/s3-27.4.667.  Google Scholar

[21]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems,, J. London Math. Soc., 20 (1979), 277.  doi: 10.1112/jlms/s2-20.2.277.  Google Scholar

[22]

J. M. Olm, X. Ros-Oton and T. M. Seara, Periodic solutions with non-constant sign in Abel equations of the second kind,, J. Math. Anal. Appl., 381 (2011), 582.  doi: 10.1016/j.jmaa.2011.02.084.  Google Scholar

[23]

V. A. Pliss, "Non-Local Problems of the Theory of Oscillations,", Academic Press, (1966).   Google Scholar

[24]

Wolfram Research, Inc., "Mathematica, Version 8.0,", Champaign, (2010).   Google Scholar

show all references

References:
[1]

N. Alkoumi and P. J. Torres, On the number of limit cycles of a generalized Abel equation,, Czech. Math. J., 61 (2011), 73.  doi: 10.1007/s10587-011-0018-x.  Google Scholar

[2]

N. Alkoumi and P. J. Torres, Estimates on the number of limit cycles of a generalized Abel equation,, Discrete Contin. Dyn. Syst., 31 (2011), 25.  doi: 10.3934/dcds.2011.31.25.  Google Scholar

[3]

A. Álvarez, J. L. Bravo and M. Fernández, The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign,, Commun. Pure Appl. Anal., 8 (2009), 1493.  doi: 10.3934/cpaa.2009.8.1493.  Google Scholar

[4]

A. Álvarez, J. L. Bravo and M. Fernández, Abel-like differential equations with a unique limit cycle,, Nonlinear Anal. T.M.A., 74 (2011), 3694.  doi: 10.1016/j.na.2011.02.049.  Google Scholar

[5]

A. Álvarez, J. L. Bravo and M. Fernández, Uniqueness of limit cycles for polynomial first-order differential equations,, J. Math. Anal. Appl., 360 (2009), 168.  doi: 10.1016/j.jmaa.2009.06.031.  Google Scholar

[6]

M. J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations,, J. Differential Equations, 234 (2007), 161.  doi: 10.1016/j.jde.2006.11.004.  Google Scholar

[7]

M. A. M. Alwash, Periodic solutions of Abel differential equations,, J. Math. Anal. Appl., 329 (2007), 1161.  doi: 10.1016/j.jmaa.2006.07.039.  Google Scholar

[8]

M. A. M. Alwash and N. G. Lloyd, Nonautonomous equations related to polynomial two dimensional systems,, Proc. Roy. Soc.Edinburgh, 105A (1987), 129.  doi: 10.1017/S0308210500021971.  Google Scholar

[9]

D. M. Benardete, V. W. Noonburg and B. Pollina, Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation,, Amer. Math. Monthly, 115 (2008), 202.   Google Scholar

[10]

J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs,, Int. J. Bif. Chaos, 19 (2009), 3869.  doi: 10.1142/S0218127409025195.  Google Scholar

[11]

J. L. Bravo and J. Torregrosa, Abel-like equations with no periodic solutions,, J. Math. Anal. Appl., 342 (2008), 931.  doi: 10.1016/j.jmaa.2007.12.060.  Google Scholar

[12]

M. Chamberland and A. Gasull, Chini equations and isochronous centers in three-dimensional differential systems., Qual. Theory Dyn. Syst., 9 (2010), 29.  doi: 10.1007/s12346-010-0019-4.  Google Scholar

[13]

J. Devlin, N. G. Lloyd and J. M. Pearson, Cubic systems and Abel equations,, J. Differential Equations, 147 (1998), 435.  doi: 10.1006/jdeq.1998.3420.  Google Scholar

[14]

A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations,, Int. J. Bif. Chaos, 16 (2006), 3737.  doi: 10.1142/S0218127406017130.  Google Scholar

[15]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equations,, SIAM J. Math. Anal., 21 (1990), 1235.  doi: 10.1137/0521068.  Google Scholar

[16]

A. Gasull, R. Prohens and J. Torregrosa, Limit cycles for rigid cubic systems,, J. Math. Anal. Appl., 303 (2005), 391.  doi: 10.1016/j.jmaa.2004.07.030.  Google Scholar

[17]

A. Gasull and J. Torregrosa, Some results on rigid systems,, In International Conference on Differential Equations (Equadiff-2003), (2005), 340.   Google Scholar

[18]

Yu. Ilyashenko, Centennial history of Hilbert's 16th problem,, Bull. Amer. Math. Soc., 39 (2002), 301.  doi: 10.1090/S0273-0979-02-00946-1.  Google Scholar

[19]

A. Lins Neto, On the number of solutions of the equation $\frac{d x}{d t}=\sum_{j=0} ^n a_j(t)x^j$, $0 \leq t \leq 1$, for which $x(0)=x(1)$}, , Inv. Math., 59 (1980), 67.   Google Scholar

[20]

N. G. Lloyd, The number of periodic solutions of the equation $\dot z = z^N+ p_1(t) z^{N-1} +\cdots +p_N(t)$, , Proc. London Math. Soc., 27 (1973), 667.  doi: 10.1112/plms/s3-27.4.667.  Google Scholar

[21]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems,, J. London Math. Soc., 20 (1979), 277.  doi: 10.1112/jlms/s2-20.2.277.  Google Scholar

[22]

J. M. Olm, X. Ros-Oton and T. M. Seara, Periodic solutions with non-constant sign in Abel equations of the second kind,, J. Math. Anal. Appl., 381 (2011), 582.  doi: 10.1016/j.jmaa.2011.02.084.  Google Scholar

[23]

V. A. Pliss, "Non-Local Problems of the Theory of Oscillations,", Academic Press, (1966).   Google Scholar

[24]

Wolfram Research, Inc., "Mathematica, Version 8.0,", Champaign, (2010).   Google Scholar

[1]

Jaume Llibre, Claudia Valls. Rational limit cycles of abel equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021007

[2]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[3]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[4]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[5]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[6]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[7]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[8]

Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169

[9]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[10]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[11]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021010

[12]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[13]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[14]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[15]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[16]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[17]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[18]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[19]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[20]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]