-
Previous Article
The Katok-Spatzier conjecture, generalized symmetries, and equilibrium-free flows
- CPAA Home
- This Issue
- Next Article
Renormalized entropy solutions for degenerate parabolic-hyperbolic equations with time-space dependent coefficients
1. | Department of Mathematics, Fuyang Teachers College, Anhui 236037, China |
2. | Wuxi Teachers' College, Jiangsu 214153, China |
3. | Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030 |
References:
[1] |
P. Bénilan and H. Touré, Sur l'équation générale $u_t=a(\cdot,u,\phi(\cdot,u)_x)_x+v$ dans L1. II. Le probléme d'évolutions, Ann. Inst. H.poincaré Anal. Non Linéaire, 12 (1995), 727-761. |
[2] |
M. Bendahmane and K. H. Karlsen, Renormalized entropy solutions for quasilinear anisotropic degenerate parabolic equations, SIAM J. Math. Anal., 36 (2004), 405-422.
doi: 10.1137/S0036141003428937. |
[3] |
M. C. Bustos, F. Concha, R. Bürger and E. M. Tory, "Sedimentation and Thicking: Phenomenological Foundation and Mathematical Theory," Kluwer Academic Publishers, Netherlands, 1999. |
[4] |
J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Rational Mech. Anal., 147 (1999), 269-361.
doi: 10.1007/s002050050152. |
[5] |
G.-Q. Chen and E. DiBenedetto, Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations, SIAM J. Math. Anal., 33 (2001), 751-762.
doi: 10.1137/S0036141001363597. |
[6] |
G.-Q. Chen and K. H. Karlsen, Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients, Commun. Pure Appl. Anal., 4 (2005), 241-266. |
[7] |
G.-Q. Chen and B. Perthame, Well-posedness for non-isotropic degenerate parabolic-hyperbolic equation, Analyse non-lineaire, 20 (2003), 645-668.
doi: 10.1016/S0294-1449(02)00014-8. |
[8] |
S. Evje and K. H. Karlsen, Monotone difference approximations of BV solutions to degenerate convection-diffusion equations, SIAM J. Numer. Anal., 37 (2000), 1838-1860.
doi: 10.1137/S0036142998336138. |
[9] |
R. Eymard, T. Gallou¨et, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Numer. Math., 92 (2002), 41-82.
doi: 10.1007/s002110100342. |
[10] |
L. V. Juan, "The Porous Medium Equation: Mathematical Theory," The Clarendon Press, Oxford university press, Oxford, 2007. |
[11] |
K. H. Karlsen and M. Ohlberger, A note on the uniqueness of entropy solutions of nonlinear degenerate parabolic equations, J. Math. Anal. Appl., 275 (2002), 439-458.
doi: 10.1016/S0022-247X(02)00305-0. |
[12] |
K. H. Karlsen and N. H. Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients, M2AN Math. Model. Numer. Anal., 35 (2001), 239-269.
doi: 10.1051/m2an:2001114. |
[13] |
K. H. Karlsen and N. H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coeffcients, Discrete Contin. Dyn. Syst., 9 (2003), 1081-1104.
doi: 10.3934/dcds.2003.9.1081. |
[14] |
S. N. Kružkov, First order quasilinear equations with several independent variables, Math. USSR. sb., 10 (1970), 217-243.
doi: 10.1070/SM1970v010n02ABEH002156. |
[15] |
N. N. Kuznetsov, Accuracy of some approximate methods for computing the weak solution of first-order quasi-linear equation, USSR comput. Math. and Math. Phys., 16 (1976), 105-119.
doi: 10.1016/0041-5553(76)90046-X. |
[16] |
M. Ohlberger, A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations, M2AN Math. Model. Numer. Anal., 35 (2001), 355-387. |
[17] |
B. Perthame and P. E. Souganidis, Dissipative and entropy solutions to non-isotropic degenerate parabolic balance laws, Arch. Rational Mech Anal., 170 (2003), 359-370.
doi: 10.1007/s00205-003-0282-5. |
[18] |
A. I. Volpert and S. I. Hudjaev, Cauchy's problem for degenerate second order quasilinear parabolic equation, Transl. Math. USSR Sb, 7 (1969), 365-387.
doi: 10.1070/SM1969v007n03ABEH001095. |
[19] |
Z. Wu and J. Yin, Some properties of functions in $BV_x$ and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations, Northeastern Math. J., 5 (1989), 395-422. |
show all references
References:
[1] |
P. Bénilan and H. Touré, Sur l'équation générale $u_t=a(\cdot,u,\phi(\cdot,u)_x)_x+v$ dans L1. II. Le probléme d'évolutions, Ann. Inst. H.poincaré Anal. Non Linéaire, 12 (1995), 727-761. |
[2] |
M. Bendahmane and K. H. Karlsen, Renormalized entropy solutions for quasilinear anisotropic degenerate parabolic equations, SIAM J. Math. Anal., 36 (2004), 405-422.
doi: 10.1137/S0036141003428937. |
[3] |
M. C. Bustos, F. Concha, R. Bürger and E. M. Tory, "Sedimentation and Thicking: Phenomenological Foundation and Mathematical Theory," Kluwer Academic Publishers, Netherlands, 1999. |
[4] |
J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Rational Mech. Anal., 147 (1999), 269-361.
doi: 10.1007/s002050050152. |
[5] |
G.-Q. Chen and E. DiBenedetto, Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations, SIAM J. Math. Anal., 33 (2001), 751-762.
doi: 10.1137/S0036141001363597. |
[6] |
G.-Q. Chen and K. H. Karlsen, Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients, Commun. Pure Appl. Anal., 4 (2005), 241-266. |
[7] |
G.-Q. Chen and B. Perthame, Well-posedness for non-isotropic degenerate parabolic-hyperbolic equation, Analyse non-lineaire, 20 (2003), 645-668.
doi: 10.1016/S0294-1449(02)00014-8. |
[8] |
S. Evje and K. H. Karlsen, Monotone difference approximations of BV solutions to degenerate convection-diffusion equations, SIAM J. Numer. Anal., 37 (2000), 1838-1860.
doi: 10.1137/S0036142998336138. |
[9] |
R. Eymard, T. Gallou¨et, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Numer. Math., 92 (2002), 41-82.
doi: 10.1007/s002110100342. |
[10] |
L. V. Juan, "The Porous Medium Equation: Mathematical Theory," The Clarendon Press, Oxford university press, Oxford, 2007. |
[11] |
K. H. Karlsen and M. Ohlberger, A note on the uniqueness of entropy solutions of nonlinear degenerate parabolic equations, J. Math. Anal. Appl., 275 (2002), 439-458.
doi: 10.1016/S0022-247X(02)00305-0. |
[12] |
K. H. Karlsen and N. H. Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients, M2AN Math. Model. Numer. Anal., 35 (2001), 239-269.
doi: 10.1051/m2an:2001114. |
[13] |
K. H. Karlsen and N. H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coeffcients, Discrete Contin. Dyn. Syst., 9 (2003), 1081-1104.
doi: 10.3934/dcds.2003.9.1081. |
[14] |
S. N. Kružkov, First order quasilinear equations with several independent variables, Math. USSR. sb., 10 (1970), 217-243.
doi: 10.1070/SM1970v010n02ABEH002156. |
[15] |
N. N. Kuznetsov, Accuracy of some approximate methods for computing the weak solution of first-order quasi-linear equation, USSR comput. Math. and Math. Phys., 16 (1976), 105-119.
doi: 10.1016/0041-5553(76)90046-X. |
[16] |
M. Ohlberger, A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations, M2AN Math. Model. Numer. Anal., 35 (2001), 355-387. |
[17] |
B. Perthame and P. E. Souganidis, Dissipative and entropy solutions to non-isotropic degenerate parabolic balance laws, Arch. Rational Mech Anal., 170 (2003), 359-370.
doi: 10.1007/s00205-003-0282-5. |
[18] |
A. I. Volpert and S. I. Hudjaev, Cauchy's problem for degenerate second order quasilinear parabolic equation, Transl. Math. USSR Sb, 7 (1969), 365-387.
doi: 10.1070/SM1969v007n03ABEH001095. |
[19] |
Z. Wu and J. Yin, Some properties of functions in $BV_x$ and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations, Northeastern Math. J., 5 (1989), 395-422. |
[1] |
Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781-790. doi: 10.3934/proc.2013.2013.781 |
[2] |
Kenneth Hvistendahl Karlsen, Nils Henrik Risebro. On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1081-1104. doi: 10.3934/dcds.2003.9.1081 |
[3] |
Young-Sam Kwon. Strong traces for degenerate parabolic-hyperbolic equations. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1275-1286. doi: 10.3934/dcds.2009.25.1275 |
[4] |
Yue-Jun Peng, Yong-Fu Yang. Long-time behavior and stability of entropy solutions for linearly degenerate hyperbolic systems of rich type. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3683-3706. doi: 10.3934/dcds.2015.35.3683 |
[5] |
M. Grasselli, Hana Petzeltová, Giulio Schimperna. Convergence to stationary solutions for a parabolic-hyperbolic phase-field system. Communications on Pure and Applied Analysis, 2006, 5 (4) : 827-838. doi: 10.3934/cpaa.2006.5.827 |
[6] |
Swann Marx, Tillmann Weisser, Didier Henrion, Jean Bernard Lasserre. A moment approach for entropy solutions to nonlinear hyperbolic PDEs. Mathematical Control and Related Fields, 2020, 10 (1) : 113-140. doi: 10.3934/mcrf.2019032 |
[7] |
Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226 |
[8] |
Flavia Smarrazzo, Alberto Tesei. Entropy solutions of forward-backward parabolic equations with Devonshire free energy. Networks and Heterogeneous Media, 2012, 7 (4) : 941-966. doi: 10.3934/nhm.2012.7.941 |
[9] |
Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5317-5336. doi: 10.3934/dcdsb.2019060 |
[10] |
Jingyu Li, Chuangchuang Liang. Viscosity dominated limit of global solutions to a hyperbolic equation in MEMS. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 833-849. doi: 10.3934/dcds.2016.36.833 |
[11] |
Gang Li, Fen Gu, Feida Jiang. Positive viscosity solutions of a third degree homogeneous parabolic infinity Laplace equation. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1449-1462. doi: 10.3934/cpaa.2020071 |
[12] |
Xingwen Hao, Yachun Li, Qin Wang. A kinetic approach to error estimate for nonautonomous anisotropic degenerate parabolic-hyperbolic equations. Kinetic and Related Models, 2014, 7 (3) : 477-492. doi: 10.3934/krm.2014.7.477 |
[13] |
Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks and Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625 |
[14] |
Inwon C. Kim, Helen K. Lei. Degenerate diffusion with a drift potential: A viscosity solutions approach. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 767-786. doi: 10.3934/dcds.2010.27.767 |
[15] |
François Ledrappier, Seonhee Lim. Volume entropy of hyperbolic buildings. Journal of Modern Dynamics, 2010, 4 (1) : 139-165. doi: 10.3934/jmd.2010.4.139 |
[16] |
M. Sango. Weak solutions for a doubly degenerate quasilinear parabolic equation with random forcing. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 885-905. doi: 10.3934/dcdsb.2007.7.885 |
[17] |
Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257 |
[18] |
John D. Towers. An explicit finite volume algorithm for vanishing viscosity solutions on a network. Networks and Heterogeneous Media, 2022, 17 (1) : 1-13. doi: 10.3934/nhm.2021021 |
[19] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure and Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[20] |
Michiel Bertsch, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. Standing and travelling waves in a parabolic-hyperbolic system. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5603-5635. doi: 10.3934/dcds.2019246 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]